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EXECUTIVE SUMMARY

This is the final report of a three year ARIES research program entitled "Dynamics of

Electronically Excited Species in Gas and Condensed Phases". This research addressed the need of

the Air Force High Energy Density Materials program to determine the lifetimes of potential

advanced rocket propellants.

The key objective was to develop novel dynamical methods to be used in elucidating the

microscopic dynamics controlling lifetimes important in energy storage in isolated and matrix-

embedded molecules. This objective was met by (1) developing novel semiclassical methods and

combining them with computer simulation technology; and (2) using these -methods to

computationally treat the electronically inelastic chemistry of light metastables, including helium

and hydrogen, in the gas and condensed phase.

This report presents the new technologies and illustrative applications for which the

relevant potential energy surface information existed. These applications successfully determined

the mechanisms controlling helium metastable lifetimes in a transition from the gas to the

condensed phase.

The methods validated by this research can be applied to problems where it is feasible to

obtain the relevant interaction potentials and couplings. Different levels of implementation of the

semiclassical methods are considered in this report. The levels vary from fully quantitative to
semiquantitative levels of accuracy, and depend on the dynamical problem. In practice, the most
relevant few-body potential energy surface information can be identified and obtained. The

methods developed here can then be used to determine the underlying complex dynamical behavior

of energetic molecules.
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GLOSSARY OF KEY SYMBOLS

AQ V 2

R Multidimensional Laplacians

T Partial derivatives

Multidimensional Gradient

u. Kronecker delta

kcy Photon polarization unit vector for wavevector k and polarization C

(v) Momentum coupling for semiclassical change of coordinates

gt I'Covariant metric tensor

H Hamiltonian operator

h, h Planck's constant, and divided by 2nc

h
nv,n; v' Hamiltonian matrix element in close coupled equation

He* Electronically excited helium atom

r(t, r O' ") Modified function related to the semiclassical Jacobian J(t,r 0 'i)

J V Semiclassical Jacobian

r ; tR Reduced masses

P (V)(R) Momentum function for channel v at streamline coordinate R

P P First and second time derivatives of P

pv . Its
sQ v Elements of the semiclassical Jacobian matrix
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i Cross section for transition from state i to j

t (v) Time for channel v

A
T Kinetic energy operator

UT  Transpose of u

Vv (Q) Adiabatic potential for channel v

W v(Q) Hamilton's characteristic function

Modulus valued

Complex conjugate of 1 v

a b Vector Dot (scalar) product of vectors and b

Tensor covariant product

( ) Canonical ensemble average, quantum mechanical expectation value

+

fl[ Adjoint of

div Divergence operator

argf..] Argument of [..]

mod[7c] Modulo ic

(p', (p" First and second derivatives of )
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INTRODUCTION
High energy density material (HEDM) candidates necessarily involve excited or energetic

molecular states. Their metastability in the gas phase can arise from spontaneous radiative decay,

predissociation, or energy loss induced (via radiative and nonradiative relaxation, and reaction) in a

collision with the ambient gas molecules. Any HEDM will be eventually used in a condensed phase

environment for practical application. In the matriA environment, a variety of time dependent

processes can occur that lead to decay of the stored energy. (1) the excitation may relax by radiative

decay, (2) it may decay due to the relaxation induced by the coupling to the lattice phonons, (3) it

may relax into modes localized at the site of the HEDM [such modes are strongly coupled to the

HEDM states], (4) the stored excitation energy may be resonantly transferred to another excited

molecule [this is the elementary step that leads to energy migration], (5) the excitation may be

nonresonantly transferred to a chemically different matrix species, and (6) a chemical reaction of

the excited HEDM may take place.

The main goal of this research program has been to develop the capability to identify

important quenching pathways in gas and condensed phases using theoretical methods. In order to

be able to treat electronically excited species, which are a key source of new metastable systems,

we have concentrated on developing dynamical methodologies for electronically inelastic collision

problems. We have addressed gas and condensed phase lifetime problems with helium metastables

as prototypes.

Our key accomplishments in this research program include:

(1) development and validation of general and powerful semiclassical methods for energetic

species and polyatomic systems,

(2) development of reduced heatbath models of condensed phase helium,

(3) development of models of condensed phase hydrogen matrix, and

(4) development of simulation procedures for solution-phase reaction and cluster formation

of HEDM with solvents.

As an application, we present elucidation of the important dynamical mechanisms

contributing to the observed helium metastable atom quenching propensities in gas and condensed

phases using accurate ab initio input for the appropriate electronic potentials and couplings. A

variety of processes have been addressed in validations or illustrative examples: (1) gas and

condensed phase collision-induced radiative quenching, (2) gas and condensed phase collisional

(nonradiative) quenching, (3) gas phase vibrational energy transfer, (4) gas phase electronic energy

transfer, (5) condensed phase reaction with solvent medium, (6) pressure dependent solvation

effects on different electronic states.
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An illustrative example of our results concerns the dynamical mechanisms for the observed

lifetime trends in helium metastables. Table 1 shows the known lifetimes of electronically excited

He*(2 3 S) atoms and He2*(a3 .u+) molecules in vacuum and condensed phase environments. The

key trend to notice is the large change of lifetime (from 8000 sec to 15 .sec) that occurs upon

transfer.ring an excited atom into liquid, compared to the relatively small change (from 18 sec to 10

sec) found for the diatom. The large change in the vacuum lifetime of the atomic versus diatomic

species is also noteworthy since this change is mostly accounted for by the spin-forbidden radiative

quenching process constantly operative in the molecule. Unravelling the relevant mechanisms to

Table 1. Helium Metastable Lifetimes

Type Species Lifetime Basis

Vacuum He*(2 3S) 8000 s PRL 30, 775 (1973)

Vacuum He2 *(a3 _u+) 18 s JCP 90, 2504 (1989)

Intrinsic in 4He Liquid He*(2 3S) 15 is (T-indep) PRL 28, 792 (1972)

Intrinsic in 4He Liquid He2 *(a3 yu+) >10 s JLTP 36, 47 (1979)

In 4He Liquid He2 *(a3yu+) 30 ms PRL 28, 792 (1972)

at p=1012cm- 3

Timescales

Key Process Timescale

He*(2 3S) to He(1 IS) excitation transfer 10-8 s

Cavity Formation in Helium Liquid 10-1 s

explain the lifetime changes of the atomic species involves exploring systematically the

electronically nonadiabatic dynamical processes that result in the quenching of He(2 3S) to He(,S)

at the gaseous helium densities and at densities characteristic of condensed phase helium

environments.
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The 8000 sec isolated gas-phase lifetime of He(23S) is controlled by the dynamics of

atomic spontaneous emission whose timescale is determined by relativistically induced magnetic

multipole couplings in the atom. The shift to lower values of lifetime involves quenching dynamics

in collisions with other helium atoms. This introduces nonadiabaic dynamics involving scattering
on multiple electronic surfaces, notably the a(31 u+), A(IZu+), b(3rlg), B(IFlg), c(3Zg+), and

C(Eg+) states of He2. Dynamical studies of the important pathways leading to such an overall

spin-forbidden quenching can now be studied employing Yarkony's new ab initio results

(obtained in a parallel HEDM effort) for the relevant potential energy surfaces and nonadiabatic

couplings of this metastable system. The possible dynamical pathways can be examined by

considering emission of each of the photons at many possible energies (frequencies), thereby

providing a thorough computational exploration of the radiative quenching spectra. However, an

analysis of the important pathways may simply be based on selective dynamical results for key

scattering propensities; in this report we illustrate the usefulness of such selected studies.
Radiative quenching of the gas phase He2 (a3 -u+) state to the ground electronic state is a

dissociative process and can be viewed as a half-collisional process. The gas phase lifetime of 18

sec has been explained in terms of radiative quenching by Chabalowski et al. [JCP 90, 2504

(1989)]. Collisional quenching of the diatomic HEDM by a third He atom can also be studied by

our validated methods. However, the potential surfaces and electronic couplings are not yet

available. Nevertheless, a reasonable understanding of what happens to helium metastables in

condensed phases emerges from our approximate pairwise additive potential surfaces in the

computer simulation studies described below. This is because helium metastables form bubbles in

the condensed medium which reduce the proximity between excited species and solvent. As seen

from Table 1, the timescale for He*(2 3S) to He(l IS) excitation transfer is orders of magnitude

larger than the timescale for cavity formation in helium liquid. This is the reason why cavity

formation occurs rather than excitation transfer, which would have led to energy migration. The

formation of bubbles essentially traps the excitation energy (thus making the study of the bubble

structure and dynamics relevant to HEDM's).

The following section of technical discussions is divided into four main parts. Each part

contains the corresponding bibliography at its end. In Gas Phase Methods and Calculations,

formal developments involving semiclassical computational methods are described, He-He*

scattering calculations that include electronic inelasticity are presented, and two studies that involve

vibrationally and vibronically inelastic collisions are described. In the Condensed Phase Modelling

and Computer Experiments section computer simulations of the condensed phase structure

surrounding metastable helium atoms in high pressure helium liquid are described and the

construction of parameters for stochastic heatbath models from such simulations illustrated. This is

I1



followed by the Condensed Phase Dynamics section, where the results presented are based on

stochastic dynamics calculations of helium metastable atomic dynamics in a high-pressure helium
matrix which forms microscopic bubbles around the metastable excited atom. The fourth part,
Extended Studies, contains calculations of solvent shifts of the absorption line for the
He(2 3S)-4He*(2 3p) transition obtained from simulations; this part also contains preliminary

results from liquid hydrogen simulations.

TECHNICAL DISCUSSION

Gas Phase Methods and Calculations
Introduction
There is a key need in HEDM research for theoretical methods of treating electronically

excited energetic species in many-atom environments. Our efforts have developed novel

semiclassical methodologies that show promise for use in these applications (unlike exact quantal

methods, which are prohibitively expensive and usually intractable for problems of interest here).

We have achieved a significant breakthrough in the semiclassical methodology during this period.

The following subsection describes a new extended semiclassical formalism that has evolved from

the present computational research. Applications are then presented of electronically inelastic

helium scattering problems in early model studies as well as studies employing the accurate

potentials and electronic couplings that became recently available for nonadiabatic He*-He

collisions. This is followed by a subsection on numerical benchmark studies validating an

extremely efficient implementation of the present semiclassical technology for vibrational excitation
problems (in O+HF and Na+H2 collisions). The last subsection presents our quantum scattering

work employed for benchmarking the Na+H 2 system.

Semiclassical Methodology for Computing Multichannel Eikonal

Wavefunctions in Molecular Collisions: A Reformulation and Extension

1. ntroution
The standard quantum-mechanical description of collisional processes is based on the

adiabatic separation of nuclear and electronic motions, and assumes that the electrons

instantaneously adjust to ruclear motions because of a large difference in their masses. Encounters

taking place on a single adiabatic surface can be described in the zeroth-order approximation simply

by the classical equations of motion. However, transitions from one electronic surface to another

are essentially quantum-mechanical processes which have no analogs in classical mechanics. As

numerical solution of the Schroedinger equation is near the limit of capability of modern computers

(even for four-atom nonreactive collisions on a single potential surface 1) there is presently no hope

12



to obtain necessary information about electronically inelastic scattering processes in 2

systems by performing exact quantum-mechanical calculations.

The gap between the quantum and classical treatments can however be filled by

semiclassical theory. Construction of semiclassical solutions is simpler compared with solving the

Schroedinger equation because they are often governed by a manageable number of ordinary

differential equations of the first order [instead of the (usually large) complex set of partial

differential equations exploited in quantum mechanics]. The semiclassical theory is often

sufficiently accurate to reproduce specific quantum-mechanical features which are completely

absent in a purely classical picture. In particular the semiclassical theory is powerful enough to

describe the nonadiabatic transitions which are the main concern of the present research.

However, there is an obstacle that has been damping progress in this area for many years.

The use of semiclassical equations implies that higher-order corrections are negligible compared

with the kinetic energy of the system, so that they break down each time the kinetic energy

becomes small, which occurs at classical turning points. As a result, the semiclassical

wavefunctions become singular in such regions The one-dimensional problem has a well-known

solution within the WKB method2 that gives the recipe for continuing the semiclassical

wavefunction after its reflection at the turning point. This recipe, however, essentially exploits the

conservation of flux in connecting the incoming and outgoing waves and this is insufficient in the

multi-dimensional case because of a possible exchange of the probability density between different

degrees of freedom. The current state-of-the-art theory in this area is mainly developed at the level

of formal theorems 3 which prove existence of the necessary solutions of the time-independent

Schroedinger equation, but do not provide any practical numerical algorithms to find them. We can

cite only two works4'5 where semiclassical scattering wavefunctions have been explicitly

constructed in more than one dimension. These works exploit completely different approaches: a

rather sophisticated numerical implementation of the formal theory as it is presented in Ref.3, and

development of some approximate schemes still accurate enough to give the necessary quantitative

answers. The latter more pragmatic view of the theory presently seems to be the only realistic way

to approach the problems of practical interest. Our present research adopts the latter view.

Until now, much more attention has been to given to an alternative direction exploiting

angle-action variables, following the pioneering works of Marcus 6 and Miller7 . However, the

reported results in this direction are very limited. Even disregarding the fact that the latter approach

is related with the Schroedinger equation only through the correspondence principle (and hence it

remains unclear to what extent its predictions are equivalent to those of the asymptotic semiclassical

theory 3'8 ) there is a purely practical reason for development of the semiclassical theory in terms of

geometrical variables -- representation of realistic potential surfaces in angle-action variables is a

complicated computational problem that makes the whole scheme infeasible for applications.
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An additional problem arises when the semiclassical technique is applied to noriadiabatic

processes. The problem arises from quantal interference between wavefunctions propagated on

different potential surfaces.

The present subsection reports some new developments in overcoming both problems of

the nonadiabatic semiclassical theory which make its implementation possible for realistic systems.

Assumpting adiabatic separation of nuclear motions in the semiclassical picture allows us to

connect incoming and outgoing semiclassical solutions, correctly reproducing interference effects
between different trajectories. By including this adiabatic hypothesis into the Self-Consistent
Eikonal Method (SCEM)9 we have obtained a practical tool for treating electronically inelastic

processes with a few degrees of freedom. It is shown that SCEM corresponds to a physical
picture in which one approximates the flows of probability density on different adiabatic potential

surfaces by the average flow obtained by weighting the individulal flows with the probabilities for

the system to be in the appropriate electronic state. We also discuss some additional terms that were
previously ignored which arise in the forces governing nuclear motions for a system with two or

more degrees of freedom and suggest a numerical algorithm for their evaluation.
For a more accurate treatment of electronic inelasticity in molecular collisions we developed

a new extended approach called the Adiabatic Velocity Field Method (AVFM). This approach goes
beyond the Ehrenfest effective potential approximation employed in SCEM without compromising

on the advantages of the latter. This extended theory also exploits the eikonal ansatz for nuclear
wavefunctions in each electronic state, but each wavefunction is propagated now along its own

trajectory run on the appropriate adiabatic potential surface. One of the advantages of propagating

classical trajectories on the particular adiabatic surfaces as prescribed by AVFM is that

approximations (in addition to the short wavelength approximation) are made only in the
nonadiabatic region. The equations outside the nonadiabatic region are the exact limit of the

Schroedinger equation in the adiabatic representation as h tends to zero; hence their solutions
asymptotically reproduce specific features of the exact wavefunctions caused by local topology of

the adiabatic potential surfaces. In particular, the new technique makes it possible to treat tunneling
along the streamline coordinate R in electronically inelastic processes provided it takes place

beyond the region of strong nonadiabatic couplings.

Semiclassical multichannel Approimation in the mixed adiabatic/diabatic rpeetto

Let us consider the multichannel problem described by a set of linear partial differential

equations of the second order-

14



-4 ,Q- E)1 + V(Q) -h 2 F(Q) *V+H(Q)> V/=(

whereAI(Q) is the column formed by the functions 1I'(Q)' V2 (Q) ' ""'n(Q ) sought for,

AQg= g-/2 . g 1/2 g , (2)
Q aQ4 OaQ 4

---

and V are respectively the covariant Laplacian (see next section for comments) and the gradient in

the space of curvilinear coordinates Q. V(Q) is a n x n diagonal matrix having some potentials

Vv(Q) as its diagonal elements and H (Q) is the matrix of potential couplings with zeros at its main

.-

diagonal. The components of the vector F are n x n real antisymmetric matrices describing

nonadiabatic couplings. The set of curvilinear coordinates Q is composed of a streamline

coordinate a R and others [Q 1 _w1 , Q2  2,  describing some quasiperiodic degrees of

freedom.

In the adiabatic representation Vv(Q) are the adiabatic potentials and the matrix H(Q) a 0

so that

S((Q) = 3)_---Q E 1 +V(Q)-h 2 ''  O7 f=

The main advantage of the adiabatic representation is that the last term in brackets in Eq. (3)
vanishes in the limit as h -4 0. As a result we come to the Hamilton-Jacobi equations governed by
the adiabatic potentials. We can thus treat the coupling term as a perturbation. We show below that
one needs an assumption of such a kind when continuing the semiclassical wavefunction through
turning points of quasiperiodic motions. Another alternative is a system with only potential
couplings which are relatively small compared with the potentials Vv (Q). In the one-dimensional

case it is sufficient to require that the couplings are negligible near the turning point of the

streamline motion. We come to the problem of this type, when treating quasiperiodic degrees of

freedom quantum-mechanically by representing the Schroedinger equation

15



2- + V(Q)- E 0 (4)

in the matrix form

S 2  E + V(R)+H(R) V 0  (5)

2 dR2 -

assuming that the streamline coordinate R is orthogonal to all others. As a result Eq.(4) takes the

form

2d 2  +V0(R)-E +H(R) V 0. (6)

Applying, by analogy, a similar expansion to an electronically inelastic process described by the

Schroedinger equation, Eq. (2), we come to the set of ordinary differential equations in the mixed

representation

[ 2 d 2  _ -Evvh F w;vv(R) d v ' Uvv;v9v(R)Viv=0
VvV dR v,s'

(7)
There are two questions which we need to address here. First of all, we construct

asymptotic solutions of Eq. (1) as h -- 0. This is a relatively easy problem which can be

formulated in an arbitrary set of variables. It is much more difficult to find the connection formulas

between different asymptotic solutions. (As stressed by Schifft ° the asymptotic solutions are of

little use to us unless we know how to connect them together.) This part of the problem can be

solved only with some additional assumptions concerning the motions under discussion. Here we

restrict our discussion to systems with a single unbounded degree of freedom (a streamline motion)

couplcd w,#th several quasi-periodic degrees of freedom such that each motion has a different time
scale. There may be also some cyclic motions which do not create any difficulties on their own. All

the bound motions are uncoupled at large values of the streamline coordinate R and are assumed to

be adiabatically separable in the interaction region so that one can apply the usual WKB

quantization role.2 -
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Let us illustrate these assumptions, using scattering of a diatomic molecule by an infinitely

massive uncorrugated surface as an example. The cyclic motions are represented by the precession

of the diatomic around the normal drawn from the center of mass of the diatomic to the surface.

Relative oscillations of two atoms and the nutation of the diatom give us two quasi-periodic

degrees of freedom. Since stretching vibration, described by the variable r, usually has a much

larger frequency than the nutation we treat the former as a quasi-periodic motion with a frequency
parametrically dependent on the nutational angle 0 and the streamline coordinate R. On the other

hand, the nutation is expected to be faster than streamline motion so that we can describe it as

quasi-periodic motion with the frequency depending parametrically on R. We thus neglect the

effect of -mall-mli1tude oscillations of the interatomic distance r on the nutation of the diatomic

and treat the diatomic as a rigid linear rotator in this particular context. We shall see below that one

needs these assumptions only to formulate the connection formulas for the asymptotic solutions

and we do not make any approximations in the classical Hamiltonian itself to be consistent with
these assumptions.

Note that we included precession in our analysis only to be able to run trajectories in the

Cartesian coordinates. One can directly start from the Schroedinger equation expressed in terms of
the curvilinear coordinates R, r, 0. The appropriate kinetic-energy operator

A h 2 a2 h2  a 2D h2  1 i n2 -Fr r" -F sin si 0
29r R2  2rr2  2 Dr (8)

is very similar to that for the J=O atom-diatom nonreactive scattering problem:

A h2  a R2a h2 h ( 1 2i- 1T t R2 RR jR Dr + si y
T =R 2  r 2 r2 siny a

21±RR 29trr 9 RRR I'rr

(9)
where r is the interatomic distance in the diatomic molecule, y is the angle between the diatomic

molecule and the vector R drawn from the incident atom to the center of mass of the diatomic

molecule, and R=I R I. (Note that the volume elements dR dr sine dO and dR dr siny dy are defined

in both cases in exactly the same way.) Therefore vibrational excitation of a diatomic molecule in a

J--O collision with an atom and scattering of diatomic molecules by incorrugated surfaces can be

formally treated in terms of the nearly identical formalisms.
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To extend the theory of semiclassical transition probabilities to the multichannel equation,
Eq. (1), we start from Dirac-Marcus' representation 6,11 of the wave functions NI(Q), V2 (Q), ...

Wn(Q) as

1v (Q) = AV(Q) exp[iWV(Q)/hI , v=1,2 9..., n (10)

where A v (Q ) and W v (Q ) are real functions which vary slowly with their arguments.

Substituting (2.10) into (2.1) with

---(v) -4
P (Q) 7 Wv(Q), (11)

-4(v)(Q)2 Lv(Q P(v)(QP Q P ( (Q) () ,(Q (12)

2
and neglecting the terms of the order of h , we come to the following set of differential equations

of the first order.

i div [Vv P = V VvE P J, VF P

(13)

referred to below as the Semiclassical Multichannel Equations (SMEs). Note that div here

implies use of the covariant derivatives of a vector I so that

div I = .g-l/2 D_.g 1/2 #'l

(14)

One can easily verify that

1 --)(V) (Ql2 +V(v)P (Q) +Veff(Q)-E (15)

with

veffVef (Q)_Vv(Q)+BVv(Q) (16)
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and
-4 V')

8Vv - h I F P AVsi W v ,+ Wv)I]/Av ,
v'*v VV'[W (17)

and hence the function W v (Q) is Hamilton's characteristic function 12 for the effective potential,

given by Eq. (15).

The SMEs have the trivial solution for the single-channel problem:

1 ---(1) ! 2

f I P (Q I+ VI1(Q) =E ,(18a)

( 1
div P ] 0 (18b)

with

2I(Q) = A(Q) (19)

However, what is taken for free in that case becomes a rather complicated problem if one
has to include interference between the channels. Even the initial incoming values of effective

potentials Eq. (16) cannot be unambiguously determined because the boundary condition for

Hamilton's principal function W v (Q) is known only for the initially populated channel labeled

below by index 1. As a result, quantum-mechanical correction Eq. (17) to the potential governing

classical trajectories turns out to be an ill-defined function in the infinite-separation limit.
One of the ways to bypass this difficulty is to neglect quantum-mechanical correction Eq.

(17), compared with the adiabatic potential V v (Q), bearing in mind that this correction is

proportional to h and hence it disappears in the limit h - 0. We refer to this approximation as the
Adiabatic Velocity Field Method (AVFM). In the one-dimensional case the neglect of correction
Eq. (17) leads us to the set of ordinary differential equations

2dRL V) J 1 (V) )2]I- T[,V 21Wv - E -'P - ih~fv 7 F P

(20)
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with

(v)
P (R)= 2[E-Vv(R)] (21)

and

'I v 0 = 5vI[pO / 2 e (22
V VI VIEOI L 2 eihk(22)

that can be solved by means of the finite-difference method provided that the coupling coefficients

are negligibly small near the turning points and hence one can make use of the standard WKB

connection formulae in each channel. The same assumption is used by us for the streamline motion

in the multi-dimensional case; however the necessity to solve the set of partial differential equations

makes the problem much more complicated.

Traiectory-following coordinate system (TFCS)

Let us now express each of Eqs. (13) in terms of its own set of the curvilinear coordinates

q(v) with qsv) (s>O) used for the initial values w5 of the quasi-periodic coordinate ws on

trajectories governed by the potential V (Q) and parametrized by the time t( v) differ

for each channel. Making use of the well-known expression for the covariant derivative (see

Eq.(6.87) of Kyrala 13 with gl/2 for J here):

2 -4V a s .s' (v ,223div LVV P I= I J-1~ (~J P-)~ - (23)

sss
where g(v) are the coefficients of momentum coupling in the new set of coordinates, Jv is the

Jacobian of the transformation from q( v) to Q (positive by definition and

- .) (24)
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Taking into account that

s ss, (v)
4(v) = ', gv s (25)

with

.0
q(v)1 (26)

and

Sv) = 0  fors >-I (27)

we can represent Eq. (13) as

d-Lv - Vv  -E - P v
(v)

(28)
--- 2(v+ jl/2

- ih F ,.P'V V'

where we put
_ 1/2- t )w)IV()00v(tv)W - v ( v  v(t )/Al(0,w0) (29)

with index 1 used for the initially populated channel. Substituting Eqs. (16), (17) and (29) in (28)
we find the following equation for the phase Wv:

dW vef(
dt() = E V (Q(v)(v Wo])] (30)

and hence

t(v) f
W V(t(Vwo)=2 {I Vv (Q(V)t(VYWO) } (31)

0
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or, in a more familiar form:

t(v)

W (t ,w )= X 1P M dQ(v) (32)

V~v) 0

Note that SMEs (13) are independent of the particular choice of the curvilinear coordinates

Q as we assumed that the semiclassical approximation can be directly applied to covariant Laplacian

Eq. (2). Use of the Podolsky transformation 14 to get rid of the weight function in the volume

element (represented in terms of the curvilinear coordinates in question) leads one to a quantum-

mechanical correction of the order of h 2 which does depend on the particular choice of variables.

The correction is negligible compared with the adiabatic potential unless it is singular in the

classically allowed region. For problems of interest here such complications come from nutational

motion. Namely, if the Podolsky transformation is applied to the kinetic energy operator Eq. (8),

this correction has the form

t~2
5U=- h 1r2 sin 2o8 1±r (33)

As it becomes negatively infinite at 0 = 0.ir the effective potential in absence of precession has

infinitely deep holes which may trap trajectories. When discussing free nutational motion Landau

and Lifshitz 2 merely neglect this term by narrowing the region of validity of the semiclassical
approximation. There is however a much more ponderable argument against including this term in

the effective potential. As primarily stressed by Langer 15, to apply the WKB method one should

first express the Schroedinger equation in terms of a variable which changes from - ca to + 00. We

show in Appendix A that no singular term appears if the interval (0, 7 ) is mapped onto the x-axis

by the transformation x = In tan (0/2), and that the Bohr-Sommerfeld quantization rule gives the

exact result for rotational frequencies when applied to free nutational motion described in terms of

the new variable. The direct consequence of our analysis is that the kinetic energy operator for a

diatom scattered by a incorrugated surface should be taken in the form:

2 t2 t, 2 2 2 + 2m2

T= 29taR2 29rr2 or r 29rr2 a02 ' 24rr 2 sin 2 0 (34)
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whereas for the J--O atom-diatom nonreactive scattering problem:

A h2 a 2 a h2 2{ a h 2  1  + 1 2

T =- 2  R R 2 rr24 r 2 ( RR2 rr2 ra2"
2p.RR r ~(35)

Rotational energies for initial and final states are given by the semiclassical expression Eq. (94).

To evaluate the Jacobian J v we make use of the numerical algorithm developed by Stodden

and Micha 16, extending it to the equations of motion in curvilinear coordinates. To be more

precise, we put

Q Js ( ) >0 (36)Q(v) - aq () s>O (37)

and integrate the equations

P s _ ~ (V) _(v).- s '

=2., g Q P , (v) .-'J, s>O (38)

(F (v)
.(v) _

Pts = v--) t(v)

2 P(V)P(V) 4 +P(v) P(V) Qfs a2 ggL'' p Q t8s a 2 vV
a, )Q---U (v) a.Q"QW 9 () aQ(v)

s>O (39)
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together with the equations of motion

.(v) (v) ag 01p(V) (v) aV (40)PgL = r -gt , PQ (40) Q

aQ9 9'aQ9

4. Self-Consistent Eikonal Method (SCEM)

Let us now introduce the average flow with the kinetic energy given by the relation

1 ~ -- (v) 2 (1
Ip2 (Q) = l PV(Q) p) (Q) /P(Q)

with

P(Q) -PYv(Q) (42)
V

Multiplying both sides of Eq.(15) by P v , summing over v and taking into account that the

vector coefficients F in Eq. (17) change their sign under the interchange of v and v' one canW'

easily verify that the function P(Q) satisfies the equation

_P 2 (Q) + V(Q) = E (43)

with

V(Q) - Vv(Q ) p v(Q)/P(Q )  (44)

V

and hence we can define the velocity field of the average flow by means of the relation

-4 -
P(Q)=V w , (45)

where W(Q) is Hamilton's characteristic function for the potential V(Q), namely,

1 jV W; +V(Q)=E (46)
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Let us now, in following Micha' work1°, write functions Eq. (10) in the common eikonal

form:

V v (Q) = X v(Q) exp[iW (Q)/] 1 (47)

v (Q) = Z v (Q) exp[iW(Q)Ail, (48)

where we use the tilda to mark the diabatic wavefunctions to distinguish them from those in the

adiabatic representation. Let us now neglect the difference between the Jacobians in the sum in the

right side of Eq. (28), express the function V (Q) in the right side of Eq. (29) in terms of

Iv Q(v)[ t (v)' WO -Jr v ,V (49)

and substitute the resultant expression in Eq. (28), writing the semiclassical equations as

dV3 _ a (V)l2] 0v+.(-- - (v'0

ih (v- ]V -+ v '(; I w') + 1 ' (50)

where we put

•--(v) ---v) -
K (Q)= p (Q)- p (Q) . (51)

A similar equation in the diabatic representation takes the form

dtv -  (;2 H - V - 1 K v + Y, H , , , (52)

where H w , are some diabatic potential couplings and the tilda is again used to distinguish

between the two representations.
The main idea of the method is to run trajectories on the single potential surface

approximating the potential V(Q) by means of the relations:

v v (Q) 2 (QI /P (Q) , 2(53)
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V(Q) X H VV,'(Q) Dv(Q)/'(Q) (54)VVV

with

- 2 ( 02(55)
- v )- -( v ) - -,

After neglecting the deviations K of the momenta P from the average P which cannot

be evaluated on the Jajectories in question we thus come to the following equations for the

functions D v (Q) and D v(Q)

it =Vv-V]PV+ Y F *PP (56)
V' V

d13 v

ihdt =[Hw-Vr]ov+ IF HVV'Ov'" (57)

Note that both sets of equations conserve the right side of Eq. (55) along any trajectory governed

by the potential V (Q). The equations are solved with the boundary conditions

PV(Ow0) =Pv(0,w0 )- = [i [p 0(w 0 ) 1 /2 exp (- ik IR+ iW0 w0 )/h) (58)

Compared with the discussion presented in Section 3, a certain simplification of the-formalism
comes from the fact that Eq. (44) does not contain the ratio of functions Av(Q) and Av,(Q) ad

hence one does not have to deal with the indeterminate forms necessary to evaluate the effective
potentials Vv at t=0. It is worth pointing out that the neglect of the deviations of the momenta
+(v)

P from the average P in Eqs. (56) and (57) is the most serious assumption made so far

because it changes the asymptotic behavior of wave functions after the couplings between the

channels completely turn off. In the next section we show how one can eliminate this defect by
running a separate trajectory in the field of each adiabatic potential, instead of a single trajectory in

the field of the average potential V(Q).

The set of equations, Eq. (57), has been recently derived by Stodden and Micha 17 by

evaluating directly the time derivative of the Jacobian, Eq. (24). It should be emphasized that

although similar sets of coupled differential equations have been derived in the literature, starting

from the time dependent Schroedinger equation in either adiabatic 18 or diabatic 1 9,2 0
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representations, in the latter case one propagates some time-dependent coefficients in a basis-set
expansion whereas we try to build the wavefunction itself. The crucial difference comes from

turning points where the phases of the functions Pi v(Q) and 1 v (Q) take a discontinuous change.

When the eikonal method is applicable, it shoulf give more accurate results since it treats

translations semiclassicallly, rather than classically as in the time-dependent expansions.

The novelty of our approach when extended to the multi-dimensional case comes from the
explicit use of the time-scale separation to carry those functions through the caustics. We show

below that the equations of motion used by us in the multi-dimensional case differ from those
derived in the literature 17-19 .

Potential Eq. (54) has a very interesting feature, namely, its first derivative with respect to

time is given by the simple relation:

V- a "F P 0 V H VV v,/ .(59)
VV'

To prove it we need just represent Eq. (54) and Eq. (57) as

v 01 HJ3/P (60)

and

ih13 =(H-V1)O (61)

and then substitute Eq. (61) in the derivative of Eq. (60) with respect to t, taking into account that

the matrix H - IV 1 commutes with H . The direct consequence of the proved result is that the

governing force in the one-dmennal case is given by the simple expression

t-dH
1 -1 O/P• (62)

dQ -

(We can always make g I equal to a constant 1/9R by the appropriate change of variables so that

no additional term appears in the equation for the streamline motion.)

The governing potential force in the multi-dimensional case has a more complicated form:
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gs _ H
=Q P/P5 + a] -q, (62)Q = 2Re(pfHJ3sj/P-Pso3 H~ P (63)- Q - s> O a Q 9 ,- =

where wc put

_] , s ) ' (64)
((64

P, s = aq) (65)

Evaluation of derivatives Eq. (64) along trajectories governed by the Ehrenfest potential Eq. (53) is

discussed in Appendix B.

5. Adiabatic Velocity Field Method (AVFM)

As outlined in the end of Section I we propose to neglect quantum-mechanical correction
Eq. (17) and to run trajectories on the adiabatic potential surfaces. However to do it one needs the
initial conditions for the momenta in the channels which are not populated at the initial moment.
Since k1 is the largest momentum in the system, these momenta can be defined by the expression

hk = 12RVl(Ro,wo) - VV(Row)]+h 2 (66
V 'R 1(66)

where the adiabatic potentials represent cuts through the global potential surface with fixed

quasiperiodic coordinates establishing the asymptotic limit. For atom-diatom collisions the different
channels correspond to excitation of the atom for fixed internal vibrational coordinate. They may

also correspond to different spin-states of the diatomic molecule, as in the case of NO scattered by

a silver surface.

We also assume that dependence of the nonadiabatic couplings F wI on the quasi-periodic

1 2 0coordinates Q , Q ... is negligible at large values of the streamline coordinate R-Q and only the

component F0  along the streamline motion is asymptotically important. As a result of thisVV'

assumption SME's.(13) become asymptotically separable. This implies that
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d iv [ 2 V ] R =00)] - V(67)

and hence

arg[v(O, w 0 )] =- ik vR 0 + iW 0(w 0 )/h + mod (r) , (68)
~(v) (1)

P(v) (O,wO)= P (Ow O) MWg>0 (69)

Let us now represent Eqs.(28) as

ihiR ()[R,w](*~L =y [V(Q(VI_)Rw]J - E - 11 t4  [ PW]2] -[R,wI

jl/2.

v'f v I v- Q _]e_,)w
V'*V JV . WQv)[I~I Qvl V

(70)

where minus super (sub)-scripts denote the incoming wave. The most essential obstacle in solving

these equations in the case of more-than-oue channels is that the functions v[R,w] with v° # v

in the right-hand side of Eq. (70) are supposed to be evaluated on the trajectory Q (v)[t (v)' w0]v)--(v

The components p(V9 [Q(v-)] of the momentum P [Q(v Jacobian Jv,.[Q(v_)] and

the phase shift 8W v[Q(v _)] are approximated respectively as

V/gOlg/2 "(v F[e 1 V(-- g-( ,P , P + 2

g 2 0  [Q(V-)]=-P(V)- (v__________2 _______W___

.(71)
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P(V) (V)

.. .. (v)'.... Q ...

4t >0 (72)

with

2 0 .P9V (73)

(V)

(v-) (V

Jv,[Q (v_)1 J ,dQ(v, _ P [Q(V"(
- g_>0 M.v (75)

ws

(v).Wv['Q(v )]=Y f dw s [Q(v -A(6
s>0 wsv

(Sign (+) or (-) in Eq. (72) is chosen depending on the direction of the appropriate one-

dimensional motion.) We integrate Eq. (70) by running a set of trajectories on the adiabatic

potential surfaces with the initial conditions given by Eqs.(68) and (69) for the momenta and

0 1 0 1/2 0
v(0,w0)= 8 v [tp0(w 0)]l2exp (- ik 1 R 0 +iW0w 0 )/h) (77)

for the wavefunctions themselves.

The most important consequence of the presented mathematical arguments is that the

semiclassical multichannel solution sought for does have the eikonal form -- remember that

existence theorems have been proved 3 only for single-channel processes. The. equations for the

outgoing wave are similar to Eq. (70) except that they are solved with different initial conditions
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formulated using the WKB connection formula at the classical turning point for the streamline

motion on the appropriate adiabatic potential surface.

One of the most important advantages of the new theory, compared with SCEM, is that the

wavefunctions are propagated by means of the single-channel semiclassical equations in regions

where the nonadiabatic couplings vanish. In particular, this automatically excludes population of

energetically forbidden states, which is usually observed if wavefunctions are propagated

according to the prescriptions of SCEM.

It is worth emphasizing that the most serious approximations are made by us to extrapolate

wavefunctions from one trajectory to another in the space of quasi-periodic degrees of freedom. To

find a solution of the one-dimensional problem one just needs to propagate SME's (13) along the

streamline coordinate R with P (R) evaluated from the classical trajectory run on the vth

adiabatic potential surface, instead of using the exact self-consistent potential Eq. (16).

6. Evaluation of the S-matrix elements from semiclassical wavefunctions

To avoid the singularities at the classical turning points, when evaluating the S-matrix

elements:
s(V) L k( i(V)-

(v ' = 7N 1 v) f Rdwxg(Rf w,')u (w) . (78)
S----l v

where u ,(w) is an exact quantum-mechanical wave function and v is a set of the appropriatev

quantum numbers, we first represent Eq. (78) as

(v) I R (v) (79)

v;v' AR R v;v'
Rf

The relation turns into the i&ntity if we deal with the exact matrix element which is independent of

R. We thus find

AR k (v) s(v)N v ;v'

k(V)(w t f(woU)

( t=t I dt (, ) (t, v,(W(t;w0) ) , (80)
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where dc a dTld 2 .

S(t,w (Y U) = cw(t,w0,o)e °' (wI)R(twG,°)) (81)

dw5dw- =pS(wS)/m s >(0
S- d~r' (82)

(with pS and ms used for the momentum and the effective mass of the sth quasi-periodic degree of

freedom) and TV is the absolute value of determinant of the auxiliary matrix with the elements

p s ps p.
gs =Q 9sP 9(w U) (83)(v) = (v) P(v)(w0' D ) (3

gps
propagated instead of the functions Q M to avoid singularities in the initial conditions for

0functions Eq. (37). (The function p (w 0 ) in Eq. (77) is chosen in such a way that the matrix
_(1)

element S v.v is equal to 1 for elastic collisions.) The crucial advantage of the integral Eq. (80)

compared with Eq. (78) is that the Jacobian J v appears now in the numerator and it is multiplied

by function Eq. (81) which is nonsingular, in contrast to the function 'IVv (see Eq.(29)).

7. Conclusions
The analysis presented in this subsection revealed some promising new directions in

practical implementation of multichannel multidimensional semiclassical theory. We have

developed a self-consistent approach that makes it possible to address (under some reasonable

assumptions) the most important issues of semiclassical theory. The following computationally

affordable algorithms could be cited as the main results of this subsection:

(1) well-defined prescriptions for continuation of global (multidimensional) semiclassical
wavefunctions through classical turning points,

(2) a practical numerical algorithm to extract final populations of vibrational levels from the
semiclassical outgoing solution,

(3) implementation of the single-surface developments (1) and (2) in the multichannel
theory with valid use of the Ehrenfest effective potential (SCEM), and

(4) development of the new multichannel semiclassical theory referred to as "Self-
Consistent Adiabatically-Corrected Eikonal Method" (SCACEM) that goes beyond the
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assumptions underlying SCEM and explicitly takes into account specific topology of the
adiabatic potential surfaces.

W~e have obtained some preliminary but very encouraging numerical results2' in support of

our treatment of the single-surface problem by considering vibrational energy transfer in atom-

diatom collisions in the IOS approximation 22. Another project which was recently initiated to test

the validity of the developed formalism is a study of rotational excitation of the rigid NO molecule

scattered by the uncorrugated silver surface. The main atraction of this problem is that exact

quantum-mechanical calculations have been performed by Smedley, Corey and Alexander 23,

including electronically inelastic scattering due to nonadiabatic couplings between different spin-
orbit and A-doublet states. Excellent agreement between those calculations and the one-

dimensional reduction of SCEM, treating rotations quantum-mechanically has been reported in an

earlier publication 24; our next step is to construct semiclassical wavefunctions from realistic

classical trajectories: this is being done for NO approaching the smooth rigid surface to compare

the obtained state-to-state information with the results of the previous studies.

Appndix A

Let us consider nutational motion of a diatomic molecule described by the

Schroedinger equation:

- s2 1 d sin 0- + + 21*(V(O) - re m=0 (84)sin do dO sin 2 E

where the angle 0 is restricted to the interval (0,7r). We consider the general case, allowing the

molec -le to rotate around the quantization axis. We will need such an extension when considering

the rotationally inelastic scattering of diatomics by a corrugated rigid surface, because molecule-

surface interactions couple states with different m. In following Langer's suggestion15, we should
now transform the finite interval (O,ic) onto the whole axis ( - o,+ **). As initially emphasized by

Froman and Fr6man25 such a transformation does not lead to a unique modification of the Bohr-

Sommerfeld quantization rule. To eliminate the ambiguity, Adams and Miller26 suggested choosing

the transformation that reproduces the exact quantum spectrum of free motion. This suggestion

seems especially appropriate for the scattering problem in question. We show below that the

mapping transformation

x = In tg' (85)

33



leads one to the semiclassical energy levels shifted up by the same constant h 2 /(81*) from the

exact rotational levels j(j+l) h 2/(21*). The appropriate semiclassical wavefunctions have been

discussed in detail by Landau and Lifshitz2 who, however, come to this result only after neglecting

the singular quantum-mechanical correction, whereas we prove that transformation Eq. (85)
mapping the interval (0,7t) on the whole axis (- o,+ 0) simply eliminates it. In fact, taking into

account that

ex = tgO  (86)

we find

dx 1
dO sin 0 (87)

and hence Eq.(84) takes the form:

_12 dx2 21 2
+ _(mh) + v(x) . (88)

with

v(x) a - 41*[V(0(x)) - e] e2 x (1 + e2X)- 2  (89)

We thus find that - (mh) 2/2 now plays a role of the energy levels in the potential well v(x). In the
~I~e v~) , i~., (mu 2 I

particular case of free nutational motion V() 0 and - I ,2 v(x) <0, i. e., - ( 2 > - E

and hence

> M2*2 (90)

Applying the usual WKB rules to potential (89):

f dx/- (mh) 2 -2v(x) =irh(n + 1/2) (91)
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and coming then back to the angle 0 we find that the semiclassical energy spectrum for Eq.(84)

is given by the relation:

+d0 I2 2se V(0)) in 2 = ih(n + 1/2) (92)
0-.. \Im sin 2 0 92

For free nutational motion the change of variables r-cos 0 leads one to the integral easily

evaluated by means of the method of residues, by analogy with a similar derivation given by

Sommerfeld for the Coulomb problem (see Ch.9 in Ref. 12 ). The residues at the points -1, +1 and

infinity are equal to R_ =ilml/2, R --ilml/2 and R..= - i 2I*E. 4  respectively so that

( 21* , -I -mh)- f(n + 1/2) (93)

and hence

h 2j(j + 1) 2

j,Iml- 21* 8I (94)

We see that quantization condition Eq. (92) reproduces the exact values for rotational frequencies

but the zeroth point energy turns out to be larger by t 2/(81*).

Evaluation of the forces FA according to SCEM recipe Eq. (63) is complicated by the fact

that the set of equations

P =F (95)

gs lt~'sag 'gg
Q - ws  g =  Pg + P " ' 'Qg  (96)

p.' IQ,

a w 91 g3 (96)
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+P P "IQ aQ9 Q

+ 1Q9s H=/P2 R( - H5H )fp2
+~~~~Qs +i P' ,i 2tReIH 5 ) 5 Re(O 0
DQ gai J± ,5 - =-

+ 1 ---- Q[2 Rer =I ~ ~ ~ ,2 (97)
S50OaQ J.L )Q aQP J

iH~ a' 1l ]I3,5+ (98)

with

pgs I-aH
as = PQ p/+ 2R H _ H /2. (99)

is unclosed because we need to know the derivatives of the functions Q gswith respect to q S

=q =qS Q~ss (100)

as follows from the relation:

( aqs )_y aqs.' aqs"
aqs L 9 9 aQ t s p. (101)
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obtained by differentiating the identity

aqS' Is"
- Q s's" (102)

t '.-h 

n e 
r b

with respect to q The situation is completely different from that for the single-channel problem

because in the latter case the potential is a known function of the coordinates.

I'
To overcome this difficulty we evaluate the functions Q W in Eq. (100), assuming that thess'

problem is adiabatically separable, namely, differentiating the equation:

wS(t,w )

t-t 1 = m f d' / p(') (103)

ws(tlws)

with respect to w0 we find0

QSS(t,ws )/Ps(t,wS)- QSS(txw )/Ps(t 1, w)) (104)

and hence

Its

Q ts / P (105)

Differentiating Eq. (102) with respect to w we conclude that propagation of the functions
Q m0

s S' in time is governed in the aforementioned approximation by the equations:

Qss , =  sPs, / P- PlPit, /P 23 (106)
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He-He* Scattering Calculations

1. Model Validation Calculations

Quantal Scattering Validation of the SCE Methodology
The validity of the SCEM for describing the quenching of electronically excited atoms in

the gas phase has been tested by comparison with quantum mechanical calculations on the He 2

system. This model is based on an analysis of the relevant electronic states of the He 2 system in

the Q basis.

22 0.04

21 Vim , 0.03

20 0.02 t

0

19 SO 13 0.01

/ J 2 /2/uR2

18 1  - " 0.00

1 2 3 4 5 6

R (a.)

Figure 1. He-Ile* potential energy curves and couplings for two-state model.
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We examined a model which includes only coupling by nonadiabatic processes: the

quenching of the 2p 1P state of He to the 2s3S state in collisions with a ground state He atom. This

model includes the 2 -1 , 2 - 0 and 3 - 1 . molecular states. The 2 - 1 , state correlates

asymptotically with the 2piP atomic state and has the B lIg AS state as the dominant component.

The 2 - 0 and 3 - 1 . states are nearly degenerate, correlate asymptotically with the 2s 3S

atomic state, and have the c3  + AS state as the dominant component. Denoting these molecular

states 1, 2, and 3, respectively, the electronic Hamiltonian in adiabatic Q basis is given by

V 1 1 2 S013
2gR

H "J12  J 23e = 2 V22
H l 2 2R (107)

~so J23  V13 2p.R2  3

where V1 and V2=V 3 are the adiabatic potentials for the B and approximately degenerate c states,

respectively, g is the reduced mass of He2, J12 and J23 are matrix elements of the electronic

angular momentum ladder operator between the state pairs 1-2 and 2-3, respectively, and SO13 is

the matrix element of the spin-orbit operator between states 1 and 3. For the present calculations

the adiabatic potentials are approximated from known spectroscopic information. The couplings

are approximated as Gaussians centered around the crossing point between the B and c states.

The relevant experimental features to be calculated typically include the shape of the cross
sections for electronic transitions as a function of the collision energy. Figure 2 shows a favorable

comparison between the SCEM final cross section results for this model with exact quantal

scattering results. Keeping in mind that the SCEM is a semiclassical theory of electronic

transitions, the excellent agreement of Fig. 3 for detailed opacities (solid line: EXACT; dashed line:

SCEM) provides a positive step in the validation of the SCEM technology being employed in this
research.

Being a semiclassical description, the SCEM framework is typically employed to describe

either a forward process or the reverse process of a quantum mechanical state-to-state transition but
not both within the same computation. Achievement of state-to-state time reversal can however be

readily checked by making comparisons of the SCEM treatment of excitation and quenching
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Figure 2. Cross section for He( 1P) quenching to He( 3S). The comparison is between exact
quantum results and semiclassical SCEM results within the infinite-order-sudden
approximation (IOS).
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Figure 3. Opacity function for He(1P) quenching to He( 3S). Methods are as in Fig. 2.
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dynamics separately. This has been done for the He2 system by employing detailed balance as

follows:

2 2k.a. .=k.a .
k iai-4- k j j --4 (108)

where

2 _ 8it2Etr, i 81
k h 2  h2 (Ett-Wi) (109)

Detailed balance was tested for Etot-0.82833H, W1 --0.72833H, W 2 --0.77972H and it

was found that

kh a 2  1127.7 and k2 2  1= 1238.5

thereby displaying an excellent 10% agreement of detailed balance from these completely distinct

SCEM runs.

2. Radiative versus Nonradiative Quenching in the Gas Phase

Theoretical Treatment of the Photon in Radiative Quenching:

We treat the problem of radiative quenching in the same formal framework as used on an

earlier occasion to treat photoexcitation in polyatomics. This is feasible in principle because these

processes are inversely related to each other and involve the same underlying hamiltonian; also,

this is conceptually useful because of the structure of the SCE methodology. We only briefly point

out certain essential aspects of this framework to the problems now on hand and the validation

requirements of the SCEM.

The radiative quenching hamiltonian within the electron-field representation can be written

as:

H (h 2 /2g) V2 +H +H +HR elHrad+Hint(10

with

H H(0) +HelHe0) Hs. a, (111)

whr (0)
where H (0) contains the electronic kinetic energy as well as the interactions of the electrons and

the nuclei among themselves whereas H & 0. denotes the spin-orbit interaction which often plays
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an important role in the stability and collision dynamics of HEDM's. We will employ a second

quantized form of the framework with

He C- C E cc(R)
el a (112)

denoting the diagonalized operator H el, and Ea(R) the energies of the kets I c( ) ...
representing the resulting adiabatic electronic states. C and C+ therefore denote state annihilation

ca

and creation operators. The other terms in the hamiltonian are the multidimensional Laplacian for

the collisional and internal nuclear state (projectile and target) nuclear kinetic energies, the radiation
field hamiltonian

H rad = -,, _h Vfa + cakf
kh 'kak ka k, (113)

and the radiation-matter coupling term

Hin t i2 e V k" h ak a a)

1(114)

written within the electric dipole approximation. It is seen that Hint is controlled by the magnitude

of the electronic matrix elements of the molecular total dipole operator.

- e D aa(R) = ( a 19d 1 a) (115)

with d = - e r i +Y ZI R 1 , where r, denotes all electron coordinates, R, all nuclear ones,
i I

e is the absolute value of one electronic charge and ZI represents the nuclear charge. a ka and

a+ are photon annihilation and creation operators respectively for second quantized radiationka

field modes in a volume V. E% denotes the vacuum electric permittivity and 9k . is a unit vector of

the polarization of the radiation (electric) field. With these definitions, the time-independent

Schrodinger equation for the radiative quenching from an electronically excited polyatomic
molecule that is isolated or in a collisional process is given by,

H IW(R) )ef= E(R) IIx(R) )e,f (116)
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E(R) denoting the total energy of the electron-field wavefunction, I N(R) ) e, f for nuclear

configuration R, which is in turn readily expanded as

I W(R) )e, f= f a, N (R) I a) IN ka
a,)e ka N a (117)

in terms of products of the adiabatic spin-orbit states ja ) with photon number states I N ka

yielding the infinite set of coupled equations for the nuclear wavefunctions f a, N (R):
kG

Sh a a a V2 + f N', (R)=E(R)f N (R)
a', Nka,( 4 NkaNk, a. R a 'N)k, oT a '. aN ' a k

(118)

H(ef)
where the haniltonian matrix aN a N' includes the various intra and inter- electronic state

k o k'a'

dipole couplings and momentum (i.e., radial derivative and rotational) couplings. The problems to

be treated below are now readily perceived as simple cases of this general radiative quenching
hamiltonian that are pertinent for the subtask. A finite set of equations will arise from truncating the

hamiltonian matrix to include just the relevant channels for the computations.

Calculations with accurate potentials and couplings:

Based on the recent calculations of accurate potentials and couplings by Yarkony,I we have

performed several dynamics calculations which are described below.
We examine the pathways of collisional quenching of He(2 3S) which will become more

important at higher gas phase pressures. We assume only binary collisions are important and

quenching occurs by nonadiabatic dynamics involving scattering on multiple electronic surfaces,
notably the a(31u+), A(l1:u+), b(3rig), B(fIig), c( 31g+), and C(l1 g+ ) states of He 2 .

Electronically nonadiabatic collisions of He(IS) and He(23S) atoms can begin on either the a or c
state potentials and ultimately lead to quenching to the X-state. The a(3 .u+) and c(31 g+) states of

He 2 correlate asymptotically with He(IS) (ground state) + He(23 S). Dynamical studies of the

important pathways leading to such an overall spin-forbidden quenching can now be studied

employing Yarkony's new ab initio results1 for the relevant potential energy surfaces and

nonadiabatic couplings of this metastable system. Since these participating states involve a mixture
of singlets and triplets, transitions are to be described in the total angular momentum (Q)-
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Table 2: He 2 electronic states in the Q basis

spectroscopic dominant

notation space-spin asymptotic
Q state degeneracy in A-S basis configuration (Ms) atomic states

1- 01+x '(0) 1S2 IS, is2 IS

1- 1 a . (0) ls2s 3S, is 2 1S

1-, 2 a3+ (1), 31+ (- 1) ls2s 3S, is 2 IS
I_+ 1x .0)

1-0u1 A ' (0) ls2s IS, Is2 S

2-0 + b 3i, 1(- - ri. , (1) ls2p 3p, iS2 IS

1-0g 1 b 3 l5 ( - 1) + 3r (1 ls2p 3p, is, IS

1-.1 2 b 3 ng (0), 3 g.-1 (0) ls2p 3p, ls2 IS

1-29 2 b 3 .- I (- 1), 3 ng. (1) 1s2p 3p, ISlS

2- 1I 2 B I _1(0), 'y(0) ls2p 'IP, Is2 'S

2-09 1 c(0) ls2s 3S, s2 S

3-1w 2 3z (1), 3L (- 1) Is2s 3S, l 2 'S

t 1S2 IS
3-0£ C 't (0) ls2s S,s

Coupling selection rules:

dipole coupling, gi: g<-u, AD = 0±1
radial derivative coupling, a/aR: g4-+g, u4--u, AQ = 0
angular momentum coupling, J±: g<-g, U+-,U, Ail = ±1
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representation. Tables 2 and 3 indicate the resulting states along with the appropriate radiative and

nonadiabatic couplings.

Figure 4 illustrates the important triplet-triplet, singlet-triplet and singlet-singlet dynamical

pathways for the a --> X quenching process. (Please note that the singlet-triplet diagram suppresses

intramultiplet couplings). The solid arrows indicate transition dipoles and electronically
nonadiabatic dynamical couplings known from Yarkony's calculations (HS°:spin-orbit, gsf:spin-

forbidden dipole, and L: rotational couplings) and the dashed arrow is a negligible (due to large

energy gap) Hs0 coupling. The diagrams in Fig. 4 can be employed to identify two key pathways

of quenching: (1) a direct spin-forbidden radiative pathway between the a-state and an X-state

dressed with a photon2 (as seen in the middle diagram of Fig. 4) and (2) a more complex

multistate dynamical route involving hops among a variety of triplet states and eventually crossing

into the singlet manifold, where strong quenching propensity prevails.

Although the system = in principle quench nonradiatively, it was found that the related

probabilities are very low, _10-16, compared to -O'for the radiative routes.

The direct spin-forbidden radiative pathway is studied using a two-state model using the a

and X states within the self-consistent eikonal method (SCEM). The relevant potentials and the

spin forbidden radiative coupling are shown in Fig. 5 where the X state has been shifted up by the

relevant atomic transition energy. 2 Calculations using SCEM and based on Eq. (118) yielded the

following cross sections (in a0
2 ) for collision-induced radiative quenching: 1.23x10- 4

(probability-1x 10-6), 1.92x10-13 (probability -1.xlO- 7) at translational energies 5.4 and .27 eV

respectively. Probabilities drop down to 1.xl0-8 at .004 eV but climb again to 1.x10 - 7 at .002 eV.
These numbers are consistent with the experimental 3 cross section upper limit of -1.xl0-9a 0

2

which dealt with pressure effects at low translational energies. It is also seen that there is some

room for additional quenching contributions while remaining consistent within the experimental

upper bound.

Several different models of the multistate pathways were studied. So far, our results

indicate the following notable radiative quenching features. In spite of the many additional

radiative and nonradiative pathways available in the many-state model, the nonradiative

nonadiabatic route to the singlet manifold is incapable of competing with the propensities of the

above two-state radiative route. This is consistent with Yarkony's anticipation' of a bottleneck in

the multiplet crossover rate. The dynamical problem, however, becomes very complicated when

the various photon emitting pathways are included. A full study requires a thorough scan of photon

frequency dependence in each dipole coupling: there are 13 dipole couplings, 9 allowed and 4

forbidden. Systematic examination of selected many-state models and trajectories were done to
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Figure 4. He2 Transition Pathways, based on ab initio results of Ref. 1.
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Figure 5. He2 two-state (a and X) radiative quenching model potentials.
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examine the sensitivity to photon frequencies and dependence of results on whether keeping or

dropping the radiative couplings. Althouh dramatic changes have been found in the relative

propensities, they remain relatively small compared to the direct route. Hence it is probably safe to

a priori rule out competition from these pathways at this stage.
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Accurate Computations of Energy Transfer in Atom-Diatom
Collisions:Comparative Study of Vibrational Excitations using

Semiclassical Wavefunctions and Coupled Quantal States

1. Introduction
Molecular collisional energy transfer presents a computationally challenging problem to the

dynamicist even after the global potential energy surface is known. A rich variety of quantum
mechanical, semiclassical and classical models may be constructed to solve the problem depending
on the behavior of the potential energy surface which controls the collision dynamics. The

information from modem laser-based experiments, involving precise microscopically detailed

observations of collisions, is in the form of state-resolved cross sections and demand an
explanation from theory at that level of detail. Classical mechanics in itself does not offer a long-

term solution for obtaining such state-resolved information. Fully quantum mechanical treatments

become unwieldy for realistic systems despite recent triumphs that exploit efficient algorithms on

supercomputers. Thus there is a present-day need to develop and exploit semiclassical dynamical

theories that hold promise. In order to obtain general results, it has to be based on a.systematic
process involving detailed benchmarks against accurate quantum mechanical results for smaller

systems and the development of controlled computational schemes which are careful paths to

accomplish the devious transcription from classical trajectories to semiclassical wavefunctions.
The present subsection reports a study of vibrational excitation during atom-diatom

collisions in gas phase and is one of many successful numerical experiments in which we have

employed the eikonal ansatz for the semiclassical wavefunction. The relevant general formal
discussions have been presented in the preceeding section in greater detail. The present section will

focus on the formulation for the vibrational excitation rroblem and its numerical investigation.

In this subsection we consider a two degree of freedom model of atom-diatom collisions
(O+HF and Na+H2 collisions are studied) as defined in the rotational infinite order sudden (lOS)

approximation. The numerical tests presented here are benchmarked against previously existing

quantum 1OS (QIOS) results. Two distinct dynamical models are employed in this subsection to

describe state-to-state vibrational dynamics: (1) is based on combining a classical treatment of
translational motion with a quantal states expansion in target vibrational states (called RSVE: for

rotational sudden with vibronic expansion) and (2) is based on employing semiclassical eikonal

wavefunctions for all degrees of freedom obtained from their classical trajectories (called SIOS: for

semiclassical infinite order sudden).
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1. lOS Approximation in the diabatic representation

The rotational lOS approximation 1 for the atom-diatom scattering problem is based on

solving the two-dimensional Schroedinger equation with the Hamiltonian:

A = r 22 2  2h2 2 h 2 1(l+1) h 2 j(j+ 1)l
h =+ )I +H(Rr,y

105 2j. aR 2  2ABC G~r 2gR 2  2gBCr2 J= = 9)

where H(R,r,y) is the n x n matrix of the diabatic potentials and couplings between different

electronic states, R is the distance between the center of mass of the diatomic BC and the atom A, r

is the bond length in the diatomic BC and '7 is the angle between the diatomic and the radius

drown from its center of mass to the atom A.

2. Quantum-mechanical treatment of vibrations.

In following Redmon et. al. 2 we reduce the problem to the infinite set of the ordinary

differential equations of the second order by using the matrix representation for the hamiltonian in

the space of the vibrational coordinate r, namely, we use the eigenfunctions of the Schroedinger

equation:

h 2  d2  h 2 j(j+ 1)
2 dr + VBc(r) + v2 - uF V 0

2g dr 1 (120)

as the basis set and represent Eq. (120) as

2 kj i nv + I hnv,n'v 4Ry)n , -0, (121)
d R n,v

where we put

nv,nRv' nn Wv R 2
'R

+ 2 {ADn + fdr uJ(r) uj (r)[H R, r,') - 8 nn'V BC(r)1} ,  (122)
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with

1/2
ik i. -[2at(E-eJ)] (123)

and

AD 1 1 - limJHT1 1(Rr)- H1 1(R,r,y)] (124)

used to evaluate the probabilities of transitions from the T th electronic state.

We solve the set of coupled differential equations Eq. (121) by representing wavefunctions

WJnv in the common eikonal form 3:

nv (RY) = 3nv(R;y)exp[iW (R;y)/ht1]• P' (R;y ) (125)

where W (R;Y) is Hamilton's characteristic function4 found from the Hamilton-Jacobi

equation4

_1)12

7 PI(I + V (R;y) -k.i (126)

with

jl=dW1'
dR (127)

_ii
and V (R;y) denotes the Ehrenfest potential:

V j(Ry)= h 13 j ,1/ 1 2
nv,n'v' nVvnv (128)
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ii
The functions 13-n satisfy the set of coupled equations:

ih13nv= X -V 0nv
nvnV' nv,n" 4 nV'- (129)

and are solved together with the equation of motion for the potential Eq. (128).

3.Semiclassical treatment of vibrations

A.Equations of Motion

We represent the wavefunction V(R, r, , lj ) in the eikonal form:

WR,( r, , lj) = A(P.r;y, lj ) exp [iW (R,r;y;lj)/ h] (130)

where W(R,r;y;lj ) is Hamilton's characteristic function

1 +W 22tr--f1 + U(R,r;y;lj)=E
211(-(9dR + -2 -rI dr (131)

for the potential

h21(l1+ 1) h j(j + 1)
U(R,r,y, lj) a V(R,r;y) + + 

(132)

2gR 2  '2gBCr 2  (132)

The momenta conjugate to the coordinates R and r are given by the relation:

dW Pl(R,r;, lj) dW (133)P0 (R' r;y;lj) =d"'I dr

To carry the wavefunction W(R, r, lj ) through turning points we represent it as

,(t,r 0 ;Ylj) = J 1 2 (t,r 0;ylj) A(Or 0;j) C(t,r 0 ;Y;l j  (134)

where t is time, r0 is the initial value of r on the trajectory run on the potential surface U and

J (t,r 0; y, lj ) is the Jacobian of the wansformation:

t,r0 - R(t, r 0;y;lj), r(t,r 0;7;lj) , (135)
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and then assume5 that the function (t, r0 ;y;lj) is continuous everywhere by analogy with the

one-dimensional case. We, in following Ref.5, solve the equation:

ih = U E (P 0 ) (P 1) 2
E- 2g 2 g BC (136)

as if the function (t, r0 ;y;1j ) itself were continous, finally shifting its phase by n/4 times the total

number of the turning points passed.

B. Initial conditons

Let us put Q0 -R, Q1 =r, w1  r 0

h 2j(j + 1)Vr) =-VBC(r) +
CBC r2 

(137)

Then the initial conditions take the form

Q 0(O,r 0 , 1)-R 0 , Q (t0 ,r 0 ,± 1)=r 0  (138)

P0(t0,r0,5 1)-pj , P(t0,r0 ,± 1)=± Pr(r 0 ) (139)

with

P, .j=htkv = 2±(E -e vj)
= v V? (140)

and

Pr(r) J 1 BC e vj- Vj(r)], (141)

Ql(0,r0,+ 1)- 0, Ql (0,rf 1) 4 1
9(142)
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0 1 = -iJ

P0 (t 0 ,r 0 ± 1) 0, P l(O,ro,± 1) 1 d r

P (o,ro,± 1) - r--ro  (143)

W0 (rOW± 1) ±L dr'Pr(r') -4 (
(144)

J(O, r 0 ,± 1)- Pvj'/  (145)

V(0, r 0,9 ± 1) kvIPr(r0)1]-1/2 iW0 (r0 ,±1)-ik VjR 0

1W / (r ',± 1)-ik R
(0,r0+ 1)= llJ(0, a0, 1)1 e (147)

C. Connection formulae

If the interaction between vibrational and collisional motions is negligible the derivative of r

with respect of its initial value r0 can be evaluated by differentiating the equation:

r(t,r0 )

t =J BC rf dr'/Pr(r') (148)
0

with respect to r0 at the fixed moment t. We find

prl(r)( r0)- pl(r 0  0 (149)

and hence

Ql .J Pr(r)/P r (r0 )
( 0 (150)

0

Therefore if the off-diagonal element Q can be also neglected the J,-obian J factors as
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IJ(t,r 0, 1) = P0  1)P (t, rF± 1)/P (t 0 ,r 0 , ± 1) , (151)

and its zeros approximately coincide with zeros of the momenta P0 and Pl. We thus assume that

jumps of the Jacobian on the caustics are governed for adiabatically separable motions by the

standard WKB rules, namely, that the function I (Q)I is continuous there, whereas the phase of

the function C(Q) decreases by ir/2:

W(Q) -- W(Q) - ir/2 (152)

if the Jacobian changes its sign, and by 7r, if both momenta change their sign during the same time

step.

D. Average of the final amplitudes over the initial conditions

The exact quantum mechanical wave function has the asymptotics:

uv(r) -ikR f u(r) ik VRf
(Rfr)-=k]2' e + S /2 .e

Sv*,j( vj;v kl / e (153)

where the S-matrix elements S j;v ] for vj * v'j' are given by the relation:

-ik R
S vj;v'j ' k=v'j Ie f fdr V V(R frr)u v J (r) . (154)

0

By analogy with Eq. (154) we evaluate the semiclassical S-matrix elements by means of the relation:

I v, -ik J Rf
S e ; i, =_fdr v(Rf r;v)u , (r) (155)

vj;v'j 2V/vJ, 'U ± 10 vj ' vj (15

To avoid of the singularities in the turning points we first represent this matrix element as the two-

dimensional integral using the relation:

R f+AR

S. f JdR S
vj;vj' AR Rf vj;v ' . (156)
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(The relation turns into the identity if we deal with the exact matrix element which is independent of

R.) Substituting Eq. (155) into Eq. (156) we find

R(k jtBCCvj) 1/2s vj;v'j'

r+ r k(rou) }/2 tf(r°'U) 1/2
= ' odr0 E (r V f dtJ (t,r, ')(v .(tjro, )Uv,(r(t);ro)"+lr- Pr-ra 0

T/2 1/2 tfIwl d]g3/ 4 f d~kl/[T,'v] f]  d J ! [t'% ' vi [t'' Uv 5(r(t);r0(,0))9

BC - 0 0

(157)

where

"vj( t'r0 ' a ) - vj( t,r ff "o)e - ik ( r °'J) R(t'r ° 'u) (18

J(t,roU) - p(trolu)J(t,roU)=(Y (Y (159)

with
0 10 1 1 11

l(t'r 0 'u)- P (t 0,r 0 '))Ql(tr0U), l(tr 0 u) P (t 0 ,r0)Q 1 (tr 0 ou) . (160)

and the notations IT, v] and [t, vu] stand for ( r0 (r),-U) and (t, r0 (T),'o). We directly propagate

0 1

and ? 1 along the trajectory to avoid possible complications coming from the singularities in

Eq. (143) which appear if the trajectory starts from the turning point.

3. Potential Energy Surfaces

Two candidates of collisional excitation of vibrational levels were studied, (1) in
O(3P)+HF(v=O=O) collisions and, (2) in Na(3s 2S)+H 2 (v=Oj=O) collisions, both of which have

previously existing potential energy surface information. The potential energy surface for the OHF
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system is based on an earlier UHF calculation2 consisting of a sum over pairs plus three-body
correcting analytical fit (surface 1 of Ref. 2) whereas the Nai 2 collisions were studied on a DIM

potential energy surface. 6 A LEPS fit to MCSCF results for OHF were also generated in Ref.2 to

enable the dynamical study of the H abstraction reaction, but this needs to be employed only at

higher energies than presently reported. We refrain from including the analytical and numerical

details regardihg the potential surfaces for brevity since they are available elsewhere.

A central feature of the OHF potential surface that is relevant for vibrational excitation

dynamics is the expected concentration of most of the excitation (at lower energies) to a narrow

range of IOS-angles, close to the approach of 0 atom from the H-atom end of the HF molecule; in

this direction, the potential surface allows a reactive encounter to occur at higher energies. This.
will be borne out by the dynamics results below. In the case of NaH2 collisions, only the

electronically adiabatic ground surface (obtained from diagonalizing the eight diabatic DIM surfaces

of Ref. 6) is employed in the electronically elastic results to be presented below for comparing

QIOS and RSVE results.

4. Calculational Details

The RSVE dynamical calculations using Eqs. (129) are straightforward once the potential

matrix in the vibronic basis is set up. This is done by diagonalizing the asymptotic vibrational

Schroedinger equation in a harmonic basis set or employing one of many standard numerical

algorithms I to obtain the target states. The atom-diatom potential matrix is readily computed along

the trajectory since it is expanded in these target states which have amplitudes that vary with time

according to Eq. (129), thereby leading to a time-dependent potential obeying Eq. (128). The

amplitude initial conditions are chosen to correspond to unit probability in the diatomic v--0 state.

The separation R is chosen large and the asymptotic negative relative momentum is defined by the

channel potential in the v--0 channel and collision energy. The final amplitudes in other state

channels resulting from solving the dynamical equations yield the inelastic transition probabilities.

The computation of cross sections involves integration over many trajectories that represent

varying IOS-angles and impact parameters for each given initial rovibrational state. All the

preliminary computations reported here are for initial v=j=O for the diatomic and the study

examines dependence on collision energy and total angular momentum (semiclassically defined by

the impact parameter).

The SIOS calculations start with the generation of a bundle of classical trajectories

determined by the collision energy and total angular momentum. Only 20 trajectories are employed

in the present results. The main task involves building the semiclassical eikonal wavefunction

along these trajectories giving special attention to the semiclassical phase changes at caustics (such

as classical turning points). The latter are determined by the semiclassical Born Oppenheimer
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approximation (see previous section and Appendix 2) applied to the present problem. The post-

collision eikonal wavefunction is then projected onto selected final states to directly determine the

S-matrix elements for inelastic transitions. The projection process employs interpolation of the
asymptotic eikonal wavefunction to result in a finely grided numerical quadrature for S-matrix
amplitudes since the inelastic trajectories end in a nonuniform grid even when the initial conditions

start from a uniform grid. Cross section computations involve integration of these amplitudes over
IOS-angles and impact parameters and introduce further quantal interference effects.

5. Results and Discussion
Figure 6 shows that excellent agreement with an exact limit QIOS benchmark is obtainable

from the RSVE computations. This success of RSVE in gas phase is consistent with the similar
.success that the coupled states ansatz has. had in treating rotationally-electronically inelastic

gas/surface encounters involving up to 282 channels. 7 The most exciting aspect of Fig. 6 is
however the promise shown there by the SIOS method, which is seen to capture the essential

physics of this collision; the results shown are from SIOS calculations that employ semiclassical

wavefunctions based on a meager 20 trajectories and are not yet numerically the best they can be.

O+HF Vibrational Excitation

II~~ 1111 1111 II I

0.14

0.12 -
A, Exact QIOS

i 0.10
> •RSVE
A 0.08 - SIOS (20traj)

0.06

0.04 -

0.02 -

0.00

-1.0 -0.5 0.0 0.5 1.0

Cos(IOS Angle)

Figure 6. Comparison of angle-dependent accurate quantum-IOS probabilities with those
obtained with the new semiclassical method for v--O - v= I vibrational excitation
in collisions between O( 3P) atoms and HF molecules at a translational energy of
3 eV. Both total and internal angular momenta are zero.
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Figures 7 and 8 show dependence on total angular momentum for the two examples of

vibrational excitation studied here. Fig. 7 contains all the data available at the time of this report.

(Detailed calculations are in progress to make a full assessment of the methodologies in different L
and Etr regimes.) The NaH 2 computations were done to see if the quality of agreement is

maintained for a completely different molecular system and Fig. 8 is encouraging (note that 1-I2

being a homonuclear diatomic molecule is fully studied by sampling half the IOS-angle space

compared to HF).

O+HF Vibrational Excitation

1 0

SCEM: Curves 1=50
8

QIOS: Symbols
A

! 6

_- 4 1=100
+

A

1=0

-1.0 -0.5 0.0 0.5 1.0

Cos (1OS Angle)

Fi'.,urc 7. Comparison of angle-dependence of accurate quantum-lOS opacities with
those obtained with the new semiclassical method for O(3P) atoms colliding
with ground-state HF molecules. Curves correspond to different values of
orbital angular momentum. Translational energy is 3.0 eV.
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Na+H2 Vibrational Excitation

30
SCEM: Curves 1=20

A QIOS: Symbols

20Ii 20-

.. , i=10

41=5
'10

+

1=0

0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Cos (IOS Angle)

Figure 8. Comparison of angle-dependent opacities from IOS quantum calculations with
those obtained with the new semiclassical method for (3s2 S) Na atoms colliding
with ground-state H2 molecules. Curves correspond to different values of orbital
angular momentum. Total energy is 2.04 eV.

6. Concluding Remarks
We have produced a systematic numerical benchmark for collisional excitation of

vibrational levels employing semiclassical methods. Two semiclassical computational routes, (1)

using a coupled quantal states ansatz to describe vibrational states quantum mechanically and
translational motion classically, within the SCEM framework, and (2) using semiclassical
wavefunctions generated from classical trajectory results using a newly developed (semiclassical
Born-Oppenheimer approximation) procedure were tested against exact quantum limit results. Both
the semiclassical methods were successful in obtaining reliable numbers for state-to-state
vibrational excitation probabilities. The use of method (2), termed SIOS herein, is indicated as an

exciting prospect: such a technique is to be welcomed as a computational route allowing the
transformation of information from classical trajectories to state-to-state transition amplitudes at the

semiclassical level. The novel feature of the SIOS scheme employed here compared to rigorous S-
matrix theory of Miller8 (which was difficult to apply in practical problems and soon went out of
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use) is that there are no nonlinear root trajectory searches to be performed here; instead, amplitudes
are obtained by projecting the eikonal scattering wavefunction on to specific final states. The
promise of such a method was demonstrated earlier in the Franck-Condon region for

photodissociation, 9 but the present validation for vibrational excitation processes significantly

extends the validity regime, by demonstrating that useful quality persists in outgoing eikonal
wavefunctions in the asymptotic region provided valid connection formulae are employed.
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The Quenching of Na(3 2 P) by H2 : A Quantal IOS Calculation of

Electronic-to-Vibrational Energy Transfer

The quenching of electronically excited Na by H2 is a prototype for electronic-to-vibrational

(E-V) energy transfer in molecular collisions. E-V energy transfer involving alkali atoms has been

widely studied both experimentally and theoretically. 1-14 The theoretical interpretation of the Na-
H2 quenching process has focused upon the two lowest states of 2 A' symmetry; 6, 10 ,13,15 "17 for

C2v geometries these are the 12A, and 12B2 states. The 2B2 state has a well; it dissociates to

Na(3p 2p) + H2 , and it exhibits a conical intersection with the 12A, surface that dissociates to

ground-electronic-state reagents. For less symmetric geometries, both these states become 2 A'.

Previous dynamical studies indicate that these two electronic states can qualitatively describe the

quenching process. 5,1 0 ,13 A quantitative description of this process requires both potential energy

surfaces for the electronic states of importance and the nonadiabatic coupling terms between these

electronic states. Ab initio restricted Hartree-Fock calculations have been reported for the potential

energies for the two lowest 2A' states for about 100 nuclear arrangements; however, no ab initio

calculations of the nonadiabatic coupling terms have been reported, and the potential energy

calculations including electron correlation (by the coupled-electron-pairs approximation -- CEPA)
have been performed only for C2, geometries. 6 ,10

Recently the diatomics-in-molecules (DIM) method 18,19 has been applied to calculate the

three lowest-energy 2A' potential energy surfaces of NaH2 .13,17 The two lowest-energy surfaces

agree well with the available ab initio calculations of Botschwina and Meyer. 6,10 A major

advantage of using the DIM formalism is that it provides a global representation of the potential

energy surfaces and the couplings between them.

There has been a large amount of work on developing methods for the quantum mechanical

treatment of electronic transitions in atom-molecule collisions.20- 32 Zimmermann and George 21

compared the use of diabatic and adiabatic representations for atom-vibrator collisions. In the

adiabatic representation coupling between different electronic states introduces first-derivative

terms in the coupled-channel equations. Zimmermann and George solved the adiabatic coupled-

channel equations by transforming the N second-order differential equations into a set of 2N first-

order differential equations. Another alternative, employed by Baer and coworkers, 23 "25 is to

obtain coupled-channel equations that could be solved using the efficient computational algorithms

developed for second-order differential equations without first-derivative terms. In Baer's

approach a transformation is made from the adiabatic representation to a diabatic representation in

which all coupling arises through off-diagonal elements of the potential matrix. In general such a

transformation does not exist,33 but it does exist if the nonadiabatic couplings are approximated by
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the Preston-Tully 19 ,34 approximation, as used in the DIM method. Baer's approach has been
applied to collinear atom-diatomic collisions, and more recently Rebentrost and Lester2' 27 have
used a similar diabatic transformation to treat the nonreactive F + H2 problem in three dimensions.

The previous quantum mechanical calculation on Na + H2 by McGuire and BeUum 5 used

the two lowest-energy adiabatic potential energy surfaces as an approximation to the diagonal
diabatic potential energy surfaces. The off-diagonal terms of the diabatic potential were modelled

as gaussian terms centered on the location of the minimum of the energy difference of the adiabatic
surfaces. Cross sections were calculated within the rotational infinite-order-sudden (IOS)

approximation; 35 ,36 however, the integral over the IOS angle was approximated using only the
perpendicular-bisector approach of the Na to the H2 molecule.

In the present calculation we describe a new method for calculating electronic transition
cross sections using adiabatic potential energy surfaces and the nonadiabatic coupling terms as
input. In this approach we use a mixed adiabatic-diabatic representation in which the motion in the

diatomic internuclear distance is treated diabatically and the motion in the Na to center-of-mass of
H2 distance is treated adiabatically. We use the rotational IOS approximation to decouple the

scattering dynamics in the orientation angle. The R matrix propagation method30"32,3 7-42 is used
to solve the coupled equations describing the scattering process in the mixed representation for
each value of the orientation angle, and the calculations are converged with respect to* the
numerical integral over the orientation angle.

In Subsection 2 we present the details of the new theoretical method, and in Subsection 3
we present details of the computational procedure. Subsection 4 contains results of the

calculations, and Subssection 5 presents a discussion.

2. Theory
We consider the collision of an atom A with a diatomic molecule BC, where R is the

distance from A to the center of mass of BC, r is the BC internuclear distance, and y is the angle

between the R and r vectors. Within the rotational IOS approximation the total Haniltonian is

given by 36

HjI'O 2 a2 2 +
H ios - g_ - R 2i R + g n 1 12pR 2 (161)

where ± is the reduced mass for the R motion, I and j are particular values of the orbital and

rotational quantum numbers, respectively, and the Hamiltonian for vibronic coordinates (x and r
where x is the collection of electronic coordinates) H-lnt is given by
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H 2 02 j 2j. j+1int 2 2B6, 2 r + + Hel

2p"BCr 2  (162)

Here 9BC is the reduced mass for the r motion and Hel is the electronic Hamiltonian. The

approximate Born-Oppenheimer electronically adiabatic eigenfunctions aA for electronic state n

satisfy the matrix eigenvalue equations

I H ,10 (,c)) = V n (r,RY) a8 '( r) n ) n nn'=1,...,Nmax (163)

and

( 0a(t) a (t) )x = 'n n,n'=l,...,Nmax (164)

where VaA (r,R,y) is the electronically adiabatic potential energy surface for electronic state n, (r)

denotes dependence on all coordinates (x,r,R,y),'and we use a bra-ket notation to denote.integrals -

- the subscript denotes the variables integrated out. Within the rotational IOS formalism the orbital
angular momenta is conserved and the rotational angular momentum is not coupled with the

electronic angular momenta.
A mixed basis for the electronic degrees of freedom is obtained as follows. For fixed R

and y a transformation is made to a representation {On) which is P-diabatic31 ,4 3 with respect to

the r motion but adiabatic with respect to R:

n maxn) nd (,r) = T,. u nn .(r,R,y) On naM
n=1 n'=l,...,nrnax (165)

where nmax  Nmax. Note that unless nma is infinite, d is actually a function of r as well as x,

R, and y. This dependence is, however, effectively removed in the
nmax -fold subspace of retained adiabatic functions by the condition of P-diabaticity, namely,

( n I r n n,n'=l,...,nm ax (166)

The transformation from the adiabatic to the mixed basis is given by

max

" u (r,R,y)=- aI fn,,(r,R y) un,n(r,R,y)
n"= nn(167)
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where

fe,.(r,R,y) I C0 n~~ 18

We require u to be an orthogonal matrix so that

O,(T) On () )~ x nj'n (169)

Note that Eq. (167) is analogous to a well known equation used to define P-diabatic bases in atom-

atom collisions.3 1-33,44

The internal wavefunctions 9dm(r) are expanded in the mixed basis

= nax Pn ) p (r) Cnvnm(RY)
n=l1 Vn=0 m=l,....M (170)

where the total number of channel is given by

nmax

M= I (Mn+1)
n=1 (171)

and pny(r) is a vibrational basis function for electronic state n satisfying

( r - I Pn, r) I r-I P y(r) ) x = S' n (172)

where Sn'v'nv=8v v for n'=n. Note that integration over r includes an r2 volume factor. The

internal eigenvectors are defined by

(,C() = E~nt i~~:/ = ; ELRY) a~
'Int, V'm.r)) X r m,m'= 1..... M (173)

and

(VL(t) !' IJmMt))x,r = mm m,m'=l .... M (174)

which yields the eigenvalue equation

H(R,y) CJ(Ry) = CJ(R,y) EJ(Ry) (175)
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where Ej is a diagonal matrix, the matrix elements of the internal Hamiltonian are given by

o' nv n0V n r g B a r2j n n

n nv n (176)

and the potential matrix n , is given by

V dA(r,Ry) = uT (r,R,y) V A(r,Ry).u(r,Ry) (177)

The total scattering wavefunction for an initial state m0 , a fixed value of the conserved

quantity 1, and a typical or average value j of the rotational quantum number is expanded in

eigenvectors of the internal Hamiltonian

4m 0 (r) = R - 1 Y m(t)Xmm o (170m 0 (178)

The rotational-IOS close-coupling equations for a fixed y are given by

fdx I dr r 2 Am' (,r) [HjIos- E]II () =(170
0 0 (179)

Substituting Eqs (161) and (178) into Eq. (179) gives

m: _- a 2  +  R m
M= 2, ' 2p.R i"]m'm

22 A j

g F m a (R' ) Xmm0  (180)

The coupling terms are defined by

FJm (  = (i'(r) -ii ,,
x,r (181)
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These expression can be evaluated by using Eq. (170); however, this requires calculations of

derivatives of C4(R,y) and matrix elements of the derivative operators in the dA basis.

The radial wavefunctions Xmm 0(R,Y) are subject to the standard boundary conditions6

XjI (R~y
Xmm 0 (RY) R- 0 0 (183)

and
p-1/2f ex[-IZ)

X m(R,y) k immo exP[-i(kjmR - 17c/2Zm0 R-4-o jm I m

-Simm (y) exp[i(kmR -1r2

S0 (184)

where the asymptotic wavenumber is defined by

k = lUra LEEm(Ry)JR-*oo A (185)

Opacity functions can be defined for each value of j and I

pjl - 1 y dsin mm ylm- S '0 Y

m 0-m' 2 0 d0 n 0 (186)

and the total cross section for transition from initial state j0 , m0 to final level m' summed over all

final rotational quantum numbers j' is

10i Xt 1(21 + 1) I

m0 - k.2  1 m0 m'
jm 0  (187)

Notice that this result is independent of j0 in the rotational IOS, but it does depend slightly on j,

which is a parameter of the approximation scheme.
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3. Calculational details

A. Vibrational basis functions
For the Na + H2 system, the electronic states considered here should correlate with H2 in

its ground electronic state when the Na to H2 distance is large. However, within the DIM model
used here the second electronic state corresponds to Na (3p 2p) + H2(1Zg) for r less than about 3.1
a0 , but for r greater than this value it crosses with Na(3s 2S) + H2(31u). At the crossing point the
energy is about 5eV above the zero of energy at Na(3s 2S) + H2(lZ g) with r = req, but the potential

then drops to about 4.74 eV as r increases. Therefore, the vibrational states are computed
individually for the two electronic states. Within the DIM formalism, all electronic coupling
vanishes for Na infinitely separated from H2 and the asymptotic diatomic potential are simply the

adaibatic potentials for the vibrating, rotating diatomic molecule. The vibrational basis function are

defined by

2 2 2j j +1) +"+ V (r) P(r) = 'jnv(r)
2BC 2BCr J (188)

where VHHn(r) is the asymptotic H2 vibrational potential for the electronic state n. The energy

levels are obtained numerically by the Cooley-Cashion method.45 All integrals over r are done

by Gauss-Hermite quadrature using 50-100 points. The quadrature points are defined by
r. = r, + x i/Ci where x, are the Gauss-Hermite quadrature nodes, and a is the range parameter

for the ground state H2 vibrational potential taken to be 4.57082 a-1. The numerical values of the
vibrational basis functions are stored on the grid of quadrature points {rk)K I to be used in

subsequent numerical integrals, e.g. Eq. (176).

B. P-diabatic transformation
Equation (167) for the transformation matrix u is solved by the Magnus method. 32 The
transformation matrix is only needed at the Gaussian quadrature points and the Magnus

approximation yields

u(rkl,R,y) =exp {-(rk- rk) fa'[1 (rk+l +rk),Ry]}u(r R,y)k+ I'kI k)'' ie(189)

The choice of u at the first grid point is arbitrary, and if no further approximations are made the

final results of the calculations are independent of this choice. For convenience we set
Unn,(r0,R,y)--nn, for all R,y and find u for r<r0 and r>r0 by inward and outward application of Eq.
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(185), respectively. r0 is chosen to be a grid point near re. The exponential of a matrix is

evaluated by the method of ref. 46.

C. R-matrix propagation
Equation (180) is not solved directly for the radial wavefunctions; instead we use the R-

matrix propagation method 3O 32 ,3 7 4 2 to obtain a global R matrix for relating the ratio of the radial

wavefunction and its derivative at large R values to the ratio at small R values. The S matrix is

then obtained from the R matrix. The method for treating electronic transitions in systems with one

internuclear degree of freedom by the R-matrix propagation method when the input is in an

adiabatic representation has been presented previously.3 1 32 This method is extended here to treat
the case of several nuclear degrees of freedom where the representation is adiabatic in the

propagation coordinate and diabatic in other coordinates, as in Subsection 2. In the R-matrix
propagation method we use internal basis functions xm(x,r,Ri,y) that are independent of the radial

coordinate R within each sector (i) centered at Ri . Propagation of the global R matrix across a
sector is accomplished in terms of the eigenvalues EJm(Ri,Y) of the internal Hamiltonian. The

coupling between the internal states arises at the sector boundaries in transforming from the internal

basis functions in one sector to those in the adjacent sector. It is the definition of this sector

transformation matrix which is the essential aspect of the scheme.
We will consider two ways to calculate the sector transformation matrix with no further

approximations, i.e., so that the results are independent of the initial condition used in integrating

Eq. (189) and are equivalent to what would be obtained by numerical integration of the Eqs. (180).

Then we will consider a fixed-diabatic-states approximation in which the P-diabaticity in the r
coordinate of the basis functions of Subsection 2 is interpreted as if

On () = 0 (190)

Assuming Eq. (190) is mathematically equivalent to assuming that the electronic states included in
the expansion are a complete set since Eq. (166) shows that the derivative of Eq. (190) is

orthogonal to the other electronic functions included in the electronic basis. The fixed-diabatic-

states approximation greatly simplifies the numerical work; we shall test its accuracy by comparing
the final cross sections to those computed without this approximation.

First consider the accurate calculation of the sector transformation matrix. The
transformation matrix from sector i to sector i+l is defined by

i,i+l +

T im (00) =(WJ Vm(X,r,R',Y) I (X,r,Ri+l, y) xr (191)
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This can be approximated by3 1'3 2

T m () - exp R') Fm ' + R

where FJm,m(R,y) is defined in Eq. (181). This expression requires the evaluation of numerical

first derivatives and to avoid having to compute the numerical derivatives of u(r,R,y) and C(R,y)
we use an alternative method to obtain the sector transformation matrix. Substituting Eq. (170)

into Eq. (192) yields

i,i+1 nM, Mn' nmax Mn

T (Y) =C (R C i ()m'm n'=1 v n ,=0 n=I v n=0  n'v n"m ' ) n'vnnv n  C nv n , m (Ri Y) (193)

where the overlap matrix is defined by

ii+1 00 A i dA i+1
nVn1nn(y) I dr Pjv (r) ( (xr,Ri, Y) In (x,r,R Y) )x PJ (r)

n = n - , 0y nx, - n () n(194)

Using Eq. (165) gives our final expression for the overlap matrix

i,i+1 0* n max i i,+1

0n'vn'n n(y) Jdr pJ (r) Z u n .n ( r R ,) t n " , , ( r ,y)

un,,,(r,R 1 y) pJn(r) (195)

where

t n'n (r'y) =On(x,nrR , ) io n (xr ' R1+l,y))x (196)

-exp {(R i +' - Ri) Fann[r,2(Ri + Ri+),y1} (197)

and

F ny n ( (198)

It is important to note that the overlap matrix in Eq. (195) is not necessarily orthogonal.
Orthogonal overlap matrices are guaranteed only when the primirve basis functions (0 in this case)
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do not change from sector to sector. However, because of the diabatic transformation in each
sector the overlap matrix is orthogonal only under special conditions. Consider the matrix product

n max N n" ii+liil
I On-v nl,,n~ n(Y) OnV"v nn ( Y)

n"=1 v 0 n n

n max cc Mr n"
f dr f dr' pJ (r)P (r') ,

n"=1 0 0 vn v n0 n

where n (x,r,Ri,). The overlap matrix is orthogonal only if the matrix defined in

Eq. (199) is the unit matrix. This can happen only if the vibrational states within each electronic

manifold are a complete set, i.e.,

Nn,

I n (r)pj (r') = 8(r - r')
v n " n" (200)

and the electronic states are also a complete set, i.e.,
n max

E,[£nd(i) )(CnA(i) [=1(201)

n=1

For the calculations performed here these conditions are not generally valid, and we therefore use

the correct equations for propagation of the sector R matrices. 314 7

If the fixed-diabatic-states approximation is employed, Eq. (190), the matrix elements
i,i+1

t n (r,y) become independent of r and can be evaluated at one arbitrary value of r. For the

chose of rfr0 , the expression for the sector transformation matrix simplifies to

i,i+l M j i nmax iT~ ( I) j, (RY)87 u ... (r. R ,Y)
Cpm v(p')v(p) nn, n(p) Yp',p n

tn~n, (r 0 )u n n (p)(r0 t, R , + Y) ( ' ',
M0  m(202)

77



M J i+1

I p,m,( , v(p)v(p) t n(p,)n(p) (r) m(R (0P' ,P (203)

4. Results
In Fig. 9, contours of the energy for the two lowest adiabatic potentials VaA(r,R,y) are

shown as a function of the H-H internuclear distance r and the distance R from the Na atom to the
center of mass of H2, at three values of the angle y. In Fig. 10, the two lowest adiabatic potential

energies along cuts in r are show at three different values of R and for the same three values of y.

Evidence of an avoided crossing between the second state and third state are evident for the

potentials at R=5 ao . The nonadiabatic coupling element in r between these two lowest states

f2 (r,R,y) is shown in Fig. 11 for the three values of R at the three values of y. The coupling

exhibits one major peak which shifts to higher values of r for increasing values of R. The mixed
dAadiabatic-diabatic potential matrix Vnn,(r,R,y) obtaining from the P-diabatic transformation is

displayed in Fig. 12. The diagonal elements are close to the adiabatic curves shown in Fig. 20

especially near the minima in the potentials. The two diagonal curves tend to cross near values of r

which displayed maximum in the nonadiabatic coupling. Figure 13 shows the eigenvalues of the

internal Hamiltonian E (R,y) as a function of the Na to H2 distance for a fixed value of y. These

curves exhibit multiple avoided crossing indicative of a system with strong coupling. Figure 14
shows the first preliminary results for scattering of Na(3p 2p) from H2 in its ground vibrational

state at a total energy of 3 eV. Probabilities are shown for only the 4 final states with the largest
probabilities. The elastic channel is dominant, but the v=2 state is shown to be much larger than all

other states except for v=0 and 4 at angles near 300. This is qualitatively in agreement with the

experimental results of Hertel et. al.8 ,9
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Figure 10. Adiabatic potential energy curves vaA(r,R,y) for the two lowest energy states of

NaH2 . The curves are plotted as a function of the H2 distance r for fixed Na-to-H 2

distance R and for fixed angle y between the r and R vectors. The top, middle, and
bottom rows of plots are for R = 3, 4, and 5 a0 , respectively. The left, center, and
right columns of plots are for y = 15, 45, and 75 degrees, respectively (90 degrees
corresponds to perpendicular approach of Na to H2).
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Figure 11. Same as figure 10, expect for the nonadiabatic coupling terms f,(r,R,y) between the
two lowest energy states of NaH2.
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dA (rR yFigure 12. Same as figure 12, expect for the mixed adiabatic-diabatic potential curves Vnn(r,R,y)
obtained from the two lowest adiabatic states of NaH2 and their nonadiabatic coupling
elements. The transformation matrix from the adiabatic to diabatic representation is
arbitrarily chosen to be the unit matrix at r=-l.4 a0 .
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Figure 13. Eigenvalues EJ(R,y) of the internal Hamiltonian in the mixed adiabaic-diabatic

electronic representation for y = 2.70.
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Figure 14. Transition probabilities/S9, (YY2 as a function of the IOS angle y for collisions of

Na(3p 2p) with H2 in its ground vibrational state at a total energy of 3 eV. The solid

curve with the largest magnitude is for the elastic channel -- production of Na(3p 2p)
and H2 in its ground vibrational state. The long dashed, the other solid, the short

dashed curve are for quenching of Na to the 3s2S state to form H2 v=O, 2, and 4,
respectively.

88



0.7F I

-0.8 -04 0-0

'89



REFERENCES

1. S. Lemont and G. W. Flynn, Annu. Rev. Phys. Chem. 28, 261 (1977).

2. J.A. Silver, N. C. Blais, and G. H. Kwei, J. Chem. Phys. 71, 3412 (1979).

3. E. A. Gislason, A. W. Kleyn, and J. Los, Chem. Phys. 59, 91 (1981).

4. A. W. Kleyn, J. Los, and E. A. Gislason, Phys. Reports 90, 1 (1982).

5. P. McGuire and J. C. Bellum, J. Chem. Phys. 71, 1975 (1979).

6. P. Botschwina, Ph.D. thesis, University of Kaiserslautern, 1980 (unpublished).

7. P. Habitz, Chem. Phys. 54, 131 (1980).

8. 1. V. Hertel, Advan. Chem. Phys. 45, 341 (1981).

9. I. V. Hertel, Advan. Chem. Phys. 46, 472 (1982).

10. P. Botschwina, W. Meyer, I. V. Hertel, and W. Reiland, J. Chem. Phys. 75, 5438 (1981).

11. W. Reiland, Ph.D. thesis, Free University of Berlin, 1982 (unpublished); W. Reiland, U.

Tittes, I. V. Hertel, Phys. Rev. Lett. 48, 1389 (1982).

12. P. Archirel and P. Habitz, Chem. Phys. (1982).

13. D. G. Truhlar, J. W. Duff, N. C. Blais, J. C. Tully, and B. C. Garrett, J. Chem. Phys.,

77, 764 (1982).

14. W. H. Breckenridge and H. Umemoto, Advan. Chem. Phys. 46, 325 (1982).

15. J. L. Magee and T. Ri, J. Chem. Phys. 9, 639 (1941)

16. K. J. Laidler, J. Chem. Phys. 10, 34 (1942).

17. N. C. Blais, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 78, 2951 (193).

18. J. C. Tully, J. Chem. Phys. 58, 1396 (1973).

19. J. C. Tully, J. Chem. Phys. 59, 5122 (1973).

90



20. B. R. Johnson and R. D. Levine, Chem. Phys. Lett. 13, 168 (1972).

21. I. H. Zimmermann and T. F. George, Chem. Phys. 7, 323 (1975); J. Chem. Phys. 63,

2109-(1975).

22. P. L. DeVries and T. F. George, J. Chem. Phys. 67, 1293 (1977).

23. M. Baer, Chem. Phys. Lett. 35, 112 (1975); Chem. Phys. 15, 49 (1976); Mol. Phys. 35,

1637 (1978), 40, 1011 (1980).

24. Z. H. Top and M. Baer, Chem. Phys. 25, 1 (1977); J. Chem. Phys. 66, 1363 (1977).

25. M. Baer and J. A. Beswick, Chem. Phys. Lett. 51, 360 (1977); Phys. Rev. A 19, 1559

(1979).

26. F. Rebentrost and W. A. Lester, Jr., J. Chem. Phys. 63, 3737 (1975); 64, 3879, 4223

(1976); 67, 3367 (1977).

27. F. Rebentrost, Theor. Chem. Adv. Perspectives 6B,1 (1981).

28. D. L. Miller and R. E. Wyatt, J. Chem. Phys. 67, 1302 (1977).

29. V. K. Babamov, J. Chem. Phys. 69, 3414 (1978).

30. E. B. Stechel, T. G. Schmalz, and J. C. Light, J. Chem. Phys. 74, 412 (1981).

31. B. C. Garrett and D. G. Truhlar, Theor. Chem. Adv. Perspectives 6A, 215 (1981).

32. B. C. Garrett, M. J. Redmon, D. G. Truhlar, and C. F. Melius, J. Chem. Phys. 74, 412

(1981).

33. C. A. Mead and D. G. Truhlar, J. Chem. Phys. 77, 6090 (1982).

34. R. K. Preston and J. C. Tully, J. Chem. Phys. 54, 4297 (1971).

35. There are many references for the rotational IOS approximation, see, e.g., M. A. Brandt and

D. G. Truhlar, Chem. Phys. Lett. 23, 48 (1973); R.-T Pack, J. Chem. Phys. 60, 633
(1974); D. Secrest, J. Chem. Phys. 62, 710 (1975); J. M. Bowman and S. C. Leasure, J.

Chem. Phys. 66, 288, 4724(E) (1977); R. Goldflam, S. Green, and D. J. Kouri, J. Chem.

Phys. 67, 4149 (1977); Ref. 36; V. Khare, D. J. Kouri, J. Jellinek, and M. Baer, in

91



Potential Energy Surfaces and Dynamics Calculations, edited by D. G. Truhlar (Plenum,
New York, 1981), p. 475; J. Jellinek and M. Baer, J. Chem. Phys. 76, 4883 (1982); and
references therein.

36. G. A. Parker and R. T Pack, J. Chem. Phys. 68, 1585 (1978).

37. J. C. Light and R. B. Walker, J. Chem. Phys. 65, 4272 (1976).

38. D. G. Truhlar and N. A. Mullaney, J. Chem. Phys. 68, 1574 (1978).

39. N.A. Mullaney and D. G. Truhlar, Chem. Phys. Lett. 58, 512 (1978); Chem. Phys. 39, 91

(1979).

40. N. M. Harvey, Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1979

(unpublished).

41. D. G. Truhlar, N. M. Harvey, K. Onda, M. A. Brandt, in Algorithms and Computer Codes

for Atomic and Molecular Quantum Scattering Theory, Vol. I, edited by L. D. Thomas
(National Resource for Computation in Chemistry, Lawrence Berkeley Laboratory,
Berkeley, CA, 1979), p. 220.

42. N. M. Harvey and D. G. Truhlar, Chem. Phys. Lett. 74, 252 (1980).

43. J. B. Delos and W. R. Thorson, J. Ch,,m. Phys. 70, 1774 (1979).

44. T. G. Heil and A. Dalgarno, J. Phys. B 12, L557 (1979).

45. J. W. Cooley, Math. Computation 15, 363 (1961); J. K. Cashion, J. Chem. Phys. 39,

1872 (1963).

46. E. Dalgaard and P. Jorgensen, J. Chem. Phys. 69, 3833 (1978).

47. E. B. Stechel, T. G. Schmalz, and J. C. Light, J Chem. Phys. 70, 5640 (1979).

92



Condensed Phase Modelling and Computer Experiments

Introduction
Condensed phase modelling and simulations are essential to HEDM research. The

condensed phase will be the relevant phase for storage and initial processing of HEDM's. Our
focus is on treating those chemical processes involving energetic species that are local centers of
energy storage in the medium (in contrast to an extended storage in an overall metastable solid
matrix). The key role of condensed phase modelling and simulations in our research can be

appreciated if the system is imagined to be divided into a few atoms constituting the energetic
species and the rest of the bulk phase material. The few atoms constitute a primary region, while

the bulk phase material constitutes a heat bath.
The present three year program employed a new capability involving semiclassical

methods. The new method treated the fully correlated dynamics of the chemistry in the primary
zone region. If this region is only subject to electronically adiabatic dynamics, and did not involve

energy transfer between quantized nuclear (rovibrational, phonon) states, it could be readily treated

by electronically adiabatic classical dynamics, that was well-established prior to our research
program. When the key to energy leakage or transfer away from the primary zone lies in quantum
mechanical effects, involving multidimensional quantized vibrations or possible electronic

inelasticity, it is known that a.simple classical description is not sufficient. The present new

semiclassical methods could be employed to treat these many-atom energy transfer and dynamics
problems since quantum mechanical dynamical techniques are, not computationally feasible.

One role of our simulation work is to define parameters to describe the heatbath dynamics
properly and efficiently via few-body heatbath models; the latter improve the efficiency of

performing repeated dynamics calculations, once a heatbath is characterized. Another important
role of simulations is to reveal the truth about what happens in a given model; since simulations are
"computer experiments", they often reveal unanticipated phenomena. Our computer experiments

have been restricted to the proposed classical Monte Carlo (MC) and Molecular Dynamics (MD)

simulation methods from the outset since quantal bath effects constitute an extensive problem by
themselves. Thus the studies presented in this report employ the systems helium and hydrogen at

high pressures. so that they are well described by classical simulations.

The following subsection presents results of our simulations on storing excited metastable

helium atoms in high pressure (GPa) bulk helium liquid. This is followed by a subsection on

heatbath modelling based on the methods employed in this research.
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Monte Carlo Simulations of Helium Bubble States

1. Introduction

It is known from studies on excited helium species I produced by keV electron
bombardment of liquid He that there are excited atomic and molecular species trapped in physical

bubbles, the latter essentially involving a vacuum embedded in the liquid bulk. The nature of these

bubble states have been discussed 2 and the species that exist within them have been identified by

spectroscopic methods and subsequently subjected to simple model-based interpretations. The

bubbles are stabilized by the repulsive interaction of the Rydberg-like excited electron with bath He

atoms. They have radii in the range 5-20 A depending on the excited species and the

thermodynamic state. The mechanism that supports the excited species in a bubble is closely related
to that for the case of electron-containing bubbles in liquid Helium. The repulsion of the solvating

He atoms of the liquid by the excited electron of the atomic or molecular species is considerably

less than that of a free electron since the nuclear or molecular core compensates by holding on to

the excited electron. Thus the radii of the bubbles in the electron case are almost twice larger than
the above. A related phenomenon of recent interest has been that of noble gas bubbles in metals 3

where there have been a few atomistic simulations.4 Atomistic calculations of He* bubbles in

liquid He, unlike the studies of noble-gas bubbles in metals, are quite limited. 5

The previous structural analysis of the bubble5 has been at a thermodynamic state point

where quantum mechanical effects are important. The calculations were carried out in the zero-

temperature limit, from first principles, using a variational Jastrow wave function and the integral

equations approach for fluid mixtures. It may be asked whether these quantal liquid effects are
always necessary for the bubble formation. When the thermodynamic state is changed by raising
the temperature or pressure or varying the density, regimes will appear where classical dynamics is
appropriate and it may be anticipated from simple models 2 of the classical energetics for the bubble

formation that a stable bubble will be formed even classically. If this is realistic, it means that a

computer simulation methodology based on classical molecular dynamics and Monte Carlo
techniques will provide the necessary structural and dynamical information for this clasical regime.

The classical regime occurs at room temperature in a very high pressure range (GPa

regime). In this regime we assess the influence of the liquid in affecting the metastability of the
electronically excited He-species. Due to the large size of the bubble (of diameter 5-10 A), the

trapped excited species can undergo collisions reminiscent of gas-surface processes, with the inner
surface of the bubble, that are then responsible for nonradiative quenching. Computer simulations

such as the ones explored here can provide the data (frequency moments of the heatbath spectral

density) necessary to parameterize a Generalized Langevin Equation (GLE) model 6 of the
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condensed phase dynamics influencing the metastable's quenching process. Our plan is to study

the electronically inelastic dynamics of the trapped metastable species by the Self-Consistent

Eikonal Method (SCEM)7 in a merged (SCEM+GLE) stochastic semiclassical framework 8.

The computer simulations also help explore the possible phenomena that can occur. In the

present system, solvent He atoms can cluster with the solute He* to form n-mers depending on
pressure. We explore the n-values of the Hen clusters occuring in the bubble states under the

simulation conditions and find the observed average <n> as the pressure is increased. At very low

pressures such as the ones corresponding to the past experiments on these metastables, primarily

dimers (n=2) have been reported. At the pressures studied here, we find <n> as high as 5-6 while

the bubble state character of the (model) system is still in tact. The <n> value is also dependent on

the electronic state (a or c) involved and thus could reveal the possible importance of any electronic

nonadiabaticities of the solute-solvent interaction.

Subsection 2 describes the interaction model employed in our simulations, and Subsection

3 gives the simulation details of the investigation. The concluding Subsection 4 contains the main

results and discussion.

2. Interaction Potentials

In order to characterize the He* bubble in liquid He for various pressures, one needs the

energetics of cluster formation within the bubble in the form of an interaction potential function.

Due to the unavailability of estimates of many-body interaction energies between electronically

excited stable clusters of He atoms with solvent He atoms, the present model essentially employs a

sum of the two-body potentials: it is based on using the diatomic sets a, X or c, X depending on

the g/u state of He-He* potential energy; thus it effectively ignores certain many-body effects. It is

hoped that the qualitative description of bubble states of high pressure liquid Helium should be

reasonable with this model although the quantitative nature of the present results may be changed

by such many-body energetics.
Our Monte Carlo (MC) simulations are based on the recently developed He2 *(a 37,u+ and

c 3yg+) potentials 9 in a system consisting of one excited He*( 3 S) atom situated in bulk liquid He

environment, the atoms of the latter interacting with each other via the effective (labelled X-state

here for convenience) Aziz potential. 10

V(r) = [ bel-aR- C 6 
R -6 + C 8 R-8 + C 10 R I f(R) (204)

exp [-(d/R - 1)2], R<d
f(R) = { I, R>d (205)

95



where R= r/rm, r m = 2.9673A, b = 544850.4, a = 13.353384, C6 = 1.3732412,

C8 = 0.4253785, C10 =0.1781, d=1.241314, E/kB = 10.8K, and k, is the

Boltzmann constant.
The above potential parameters were obtained 10 by fitting to the He2 dimer electronic and

vibrational energy levels, second-virial coefficients, thermal-conductivity, high-temperature

viscosity, and differential cross-section measurements. The Aziz pair potential has recently been

used in a variety of condensed phase simulation studies l and found to reproduce adequately a

sizable number of experimental data particularly the equation of state 12 . appropriate to our

moderately high pressure studies 13.

Jordan, Siddiqui and Siska9 have recently developed interaction potential models for the a
3 Z + and c 3 states of He2 on the basis of generalized Morse-Hulburt-Hirschfelder functions

U g

to describe both the well regions (Region A) and barriers (Region B) and of improved Tang-
Toennies form for the long-range van der Waals interaction (Region C). We refer the reader to

their work for the functional forms in each region. The 17-parameter (see table 11 of ref. 4a except

that due to a misprint, the sign of the c parameter entering Region B interaction must be changed

for the a-state potential fit) models have been obtained by using the data from crossed beam

scattering experiments, ab initio results and low-temperature exchange rates. The a-state potential

has an attractive well for separations of about IA, followed by a high repulsive barrier around

2.7. The excited a-state potential has a hump in the region of 2.7 below which is located the
bound He2*(3Zu+) species having an equilibrium separation of close to IA. Similar behavior is

also found for the c-state potential corresponding to He2*(3Zg+) the main difference from the a-

state being the larger barrier. The minima for the c- and a-states are very close. Figure 15 shows a
comparison of the intermediate range parts of the v -- 'e interactions as well as the Siska a- and c-
states which control the nature of the Helium bubble u,.. surrounds the excited atomic He* species.

In order to test the effect of interaction potential on the structure of the formed bubble, the available
new ab initio potential for the long range part of the a-state devised by Konowalow and
Lengsfield 14 (denoted here as the KL potential) has also been employed in one set of simulation

runs 13 (see sec. IV). The well depth of the KL potential is almost a factor of 4 larger than the
small van der Waals well of the Siska a-state and the KL hump is slightly higher than the Siska

hump. Except for ihis test 13 the potentials of ref. 9 were exclusively employed in this work.

3. Simulation Details
The MC simulations were done on a He*/He solution employing the above described

interaction potentials in a system consisting of one excited He*(3S) atom situated in a bath of

manyHe-atoms with periodic boundary conditions representing bulk liquid He. These simulations
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basically pose two problems: (1) convergence of the results because of the infinite dilution studies,
and (2) trapping of He atoms (due to the absorbing-sphere nature of the a- and c-state potentials

that allow a barrier crossing to occur resulting in a temporary absorption of solvent atoms) and
formation of compact clusters of He atoms (that result upon several solvent atoms crossing over to

the region below the barrier, that is to the left of the * marked in Fig. 15). The former problem has
been addressed by performing very long and large scale simulations for better statistics. The

number of particles needed for production runs depends on the number of solvation shells to be

included in the simulation box. In order to study the structure of the second solvation shell at high

pressures (which is not expected to be completely determined by the 256 particle simulations) as
well as to eliminate simulation box-edge effects on the structure of the bubble, we performed 500
particle simulations where necessary. The bubble structure has been obtained from an average of

three MC runs at each pressure with appropriate MC move step-size; each run consisted of one
million MC moves. We then adapted a nine-point moving polynomial smoother algorithm 15 on the

mean radial distribution function so as to eliminate numerical noise which can obscure relevant

features in the distribution.
The solvent atom's access, on passing over the a- or c-state barrier, to the attractive region

below the barrier adds to the complexity of simulations due to trapping of solvent He atoms and
formation of an Hen complex in the inner region of the bubble. This may cause simulation

problems not only in the formation of the bubble but also in characterizing the realistic structural

features of the pertinent bubble states. Further, it is expected that dynamical simulations, necessary
to obtain reliable GLE parameters, cannot be easily carried out with such barrier-crossing (see Fig.
15 for comparison of energetics) and reaction problems involving the solvent. In order to examine

these effects on the structure, we concentrated on MC simulations. Towards the goal of assessing
these barrier crossing effects on the bubble state, we experimented with different ways of
eliminating the trapping of He atoms to form the Hen species. As a result, the problem of

characterization of the He* bubble in liquid He is examined here based on two types (see below) of
MC simulations of an excited He* species ( a and c states ) in the condensed phase He environment

(solution).

A. Straight Simulation:
In this study, we mostly performed a standard or natural (straight) simulation of the

solution system allowing the uninterrupted formation of Hen* complexes. This was done to

explore the effect of a nonequilibrium reactive flux being allowed to naturally influence the

solvation structure. The simulation procedure used was standard except that He* is placed at the
centre of the simulation cell in the beginning of the run.
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Figure 15. Pairwise-additive potentials, U(r), for the ground (X) state of He2 , and for the
excited a- and c-states of He2 *. The inset figure shows the r-dependence of the
potentials for small values of r..
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B. Prevention of clustering:
Simulation of solvent structure around a specified metastable species, Hen* requires that

the species be somehow kept from transforming (by barrier crossing reaction with the solvent) to

other possible species during simulation. We have explored the effects of the following two simple

schemes of preventing such a clustering.

In the simulations described below, we simplify the algorithm by fixing the He* atom at the

centre of our simulation cell and keeping it fixed there (clamped) during the MC run. This was

done after testing such a procedure in comparison to an unclamped one. Clamping also helps

economize prevention of the possible disruption of the formed bubble, the possible disruption

being due to the He* moving to the edge of the simulation cell during the simulation.

1. Simple Rejection:

In order to restrict the trapping of He atoms below the barrier region by the simple rejection

method, we opted to reject any attempted MC move if the distance between the He* and He is less

than that of the corresponding barrier location (5.1 and 3.7 bohrs for a- and c- states respectively).

The number of such rejected moves is monitored along with various thermodynamic quantities

such as energy, and pressure. In order to assess the effect of such rejected moves, a series of MC

simulations were performed for both a- and c-states at two pressures. All the simulation results are

obtained by averaging over 2 to 3 million moves for 256 particles. Where necessary, we have

performed 500 particle simulations as are mentioned below.

2. Flow Instead of Rejection:

Though the MC moves are being rejected in the above simple rejection procedure if the

atoms go inside the harrier location, the solvent atoms being left at or near the barrier location is

expected to contribute some additional features in the structure. In order to eliminate such effects

due to the simple rejection of reaction around the barrier location, in the flow type of solvation

model, atoms trying to enter the bubble (i.e., either dimerize or form higher clusters) are instead

displaced across to the respective octant comers of the cubic simulation cell. It can be visualized

that this results in a flow system.

4. Results & Discussion

To date, experimental studies on helium metastables and the theoretical models employed

for them have been in the low pressure and temperature regime. The occurrence of Helium atoms
and He 2* species have been documented in this regime. Higher order clusters of He atoms such as

might be expected at higher pressures are being explored here for the first time. The studies

peformed by us so far are largely in the nature of an exploration of the technology required to
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characterize these highly excited species in condensed phases. We summarize the salient points

that have arisen in the course of our computer experiments while presenting a discussion of the

relevant structural and dynamical issues many of which are accessible to observation by modem

experiments not yet performed for the present systems.

A. Bubble Structure
The existence of a bubble-like structure in solution is clearly seen upon examining the radial

distribution function (RDF) for the solute-solvent pairs (computed by averaging over the MC runs

made). We discuss differences among the RDF's in terms of the potential function employed for

the solute-solvent interaction (a- or c-state) and other parameters of the simulation (eg. pressure,

imposed boundary conditions (cf: sec. III) etc.).

To begin with, we tested the effect of clamping the He* atom on the RDF's. Essentially

identical results were obtained for the c-state bubbles at pressures of 0.5 and 1.4 GPa by

constraining or not constraining the He* (but, in the latter case, ensuring that the box is large

enough for the entire bubble to stay inside it for the whole simulation run). Secondly, The KL a-

state bubble was simulated to see if the differences in the two a-state potentials (of ref. 9 and 14)

are detectable in the bubble structure and hence judge the adequacy of the long-range potential

being employed. Although minor quantitative differences in peak heights were noticeable, 13 the

peak positions were found to be essentially the same. These changes in peak heights were

qualitatively consistent with the difference in the potentials employed: these are a shorter first peak

attributable to the higher barrier of KL and a minor shift of probability to larger distances (closer to

the van der Waals minimum), but not significant accumulation to reflect any important role due to

the deeper well there. Thus the a-state potential of Ref. 9 was retained for the rest of the work.

Figure 16 presents our results for the He*-He radial distribution functions (RDF) of c-state

at 0.5, 1.4, and 10 GPa obtained using the Straight model simulations. The RDF's for 0.5 and
1.4 GPa show no density of He atoms below the peak structure located at 5-6a O. It is seen by

comparing to the distance scale of the potential functions in Fig. 15 that the structured RDF for

these two pressures represent the density distribution of the first few solvation shells of the

"bubble" within which the atomic He* species is located. The large RDF peak for 10 GPa near
2a 0 can be understood to reveal the formation of a possible cluster, Hen , and the remaining outer

structure as due to the formation of the bubble. The clear demarkation between the two (inner
versus outer peaks) seen in the fact that the probability becomes zero near about 4 bohrs and rises

slowly from then onwards indicates that it makes sense to call the object responsible for the short

range structure a "bubble state" just as was done for the atomic and dimer cases at lower pressures

based on experiments. It may be asked if the structure of the bubble solvation shells will be
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Figure 16. The structure of the He*(c) bubble as a function of pressure:

10.0 GPa
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influenced due to the additional interactions of the solvent with the absorbed solvent atoms present

in the cluster species within the bubble. If these interactions are important, the solvation structure

at these pressures would correspond to a different bubble state for different cluster species. We

have found that (see below) in two of the lower pressures studied here (0.5 and 1.4 GPa), this is

probably not a significant effect although this effect could be present at 10 GPa. The average

number, <n>, of atoms present in the bubble have been monitored during the simulations and are

included in Table 4.
Figure 17 contains, for the same pressures, the corresponding RDFs from simulations

based on the a-state interaction. Comparison of Figs. 17 and 18 indicate the following: (1) there is

a shift in peak positions for both a- and c-states towards smaller radii for higher pressures. The

shift in the peak positions as well as the appearance of a second solvation shell at higher pressure

can be readily understood in terms of packing effects based on available volume; (2) the bubble

peak positions do not depend on the g/u electronic state characters of the He*-He interactions and

could be because they basically lie close in energy; (3) the difference in peak heights (higher for the

c-state bubble at 10 GPa) could be due to a combination of the higher slope of the c-state barrier
near 5.7a 0 as well as excluded volume forces from additional atoms (<n>=3.6 for c-state in Table

4) of the cluster within the bubble. Clearly, at 10 GPa, the a-state has more particles within the

bubble (see <n> = 6.1 for a-state in Table 4) at this pressure but they are found unable to

contribute enough additional repulsion to compensate also for the higher slope of c-state potential
near 5.7a0; and (4) There is significant cluster formation, revealed by short-range structures in the

a-bubble RDF, at the two lower pressures, in contrast to the c-bubble. The fact that the outer part

of the RDF's for the two states at these lower pressures (0.5 and 1.4 GPa) coincide, just as
expected from the almost degenerate nature of the g/u potentials for distances beyond 6a0 , confirms

that the potential energy contribution of the additional atoms from the cluster located within the

bubble to solvation structure modification is negligible at least when <n> is as high as around 6
(Note that although the <n> value for c-state cluster at 10 GPa in relation to point 3 above is only

between 3 and 4, the peak position in question is of shorter range at 10 GPa).

B. Clustering Propensity
The value of <n> is seen to depend on which electronic state is involved so that electronic

nonadiabaticies would have an effect on this simple quantity. The propensity for the formation of
Hen* complexes was found more pronounced in the a-state compared to the c-state and is

attributable to their barrier height difference. In this work we found high pressure values of <n>

(see Table 4) significantly larger than the value of 2 that presumably occurs at ordinary low

pressures (as in reports based on previous experiments). Table 4 also presents additional

simulation data for a and c states, such as the average He*-He bond separation in the cluster that is
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trapped within the bubble. A unit value for RDF corresponds to the uncorrelated limit of average

liquid bulk pair probability. The pair probability for the inner part (i.e., within the bubble) of the

iDF is found to be an order of magnitude larger (with peak heights, seen for e.g., as in the inset

of Fig. 17 shown, of around 10-30) than the average long-range bulk pair probability. These

relative RDF magnitudes reflect the much more compact nature of the cluster located within the

bubble when compared to the liquid bulk. This compact nature leads us to a physical picture akin
to gas/surface type collision dynamics between the species in the bubble and the concave inner

surface of the bubble.
The <n> values for a-bubble appear to have saturated to a value around 6 at the highest

pressures studied here, and an order of magnitude increase in the pressure beyond the saturation

point is seen to maintain the bubble structure intact. What <n> reveals is the relative change in the

free energy of cluster formation within the bubble. The variation of <n> may be termed a static

solvent effect. It must be noted here that MC simulations do not yield the n-value dynamical

fluctuations which may affect the observability conditions for the n-mers.
The questions of how much these clustering reactions influence the bubble and the

dynamics of a given n-mer in solution are not addressed by these MC simulations within the

Straight model. In attempting to develop some insight into these processes, we have developed the

other two models described in Subection 3 that prevent further clustering of a specified n-mer with

a solvent atom to form an (n+l)-mer. Results for RDF's from the Flow model, the Simple

Rejection model, and the Straight model for the a-state at 1.4 GPa are compared in Fig. 18. The
first two types of simulations ( termed Monomer'l and Monomer'2 in Fig. 18) constrain the
bubble species to be solely He* atoms by preventing the formation of even He2*. Clearly, neither

the peak positions nor the peak structural features are in good agreement with each other in Fig.

18, thereby displaying tremendous sensitivity to the simulation model choice and the important role

of reaction in bubble structure maintenance, at least for this n=l case. This <n> is quite low

compared to the average <n> = 6.3 value of Table 4 for this pressure. Thus the atomic species

examined is probably an unstable one under the conditions of 1.4 GPa. Naturally, no rejection
scheme makes physical sense unless the level n, at which Hen  is fixed, is a stable (albeit

metastable) species in the condensed phase matrix.
We conclude the discussion of the nonclustering model studies with a few remarks on the

technology used to do the simulations. It was found that the 256-particle Flow model simulation

resulted in RDF values greater than 1.0 around the. boundary of the simulation cell. In order to

avoid this spurious effect as well as to reduce any possible effect on the main peak of the bubble,
we performed 500-particle simulations and this is the one included in Fig. 18. The first peak

position and height are reproducible in both sets (256 and 500 particle runs) of simulations. The
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Figure 17. The structure of the He*(a) bubble as a function of pressure:

10.0 GPa

1.4 GPa

0.5 GPa

The inset shows the short-range structure.
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Figure 18. The structure of the He*(a) bubble for different simulation strategies that prevent

clustering with the solvent (as discussed in Subsections 3 and 4 of this section).
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Flow model RDF in Fig. 18 may imply that although the bubble may have been formed it is

disrupted or diffused out because the particles responsible for its formation are being taken out to

the comers of the cell. Clearly, the simple prescriptions of the nonclustering models employed

here are insufficient for achieving the purpose of realistic characterization of n-mers when n is very

different from <n>. It is hoped that improved simulation schemes can be devised, but (we feel)

perhaps only for situations when n is closer to <n> so as to study pertinent species (which should

not have n that is too different from <n>).

5. Conclusion
We have presented results of a thermodynamic state dependent MC study of the Helium

bubble states arising from electronically excited He* metastables being trapped in a condensed

phase He environment. Even in this classical regime, bubbles were found to exist and house the

excited species, although the bubble contents are a sensitive function of pressure. Various RDF's

were presented to analyze and interpret the bubble changes with pressure, electronic state features

etc..

This type of simulation is also highly pertinent to materials problems such as embrittlement

in fusion reactor materials associated with generation of He that have attracted considerable interest

in recent years. Bombardment with heavy noble-gas ions is widely used in various modem

preparation processes 16 for metal surfaces and films. It has been shown that the He embrittlement

observed in metals was due to the trapping and subsequent bubble formation at radiation induced

defects as well as in the absence of radiation damage 17. To evaluate the effects of noble gases on
physical or material properties of metals, it is therefore important to be able to characterize noble-

gas bubbles and to develop an understanding of their behavior. There have been a number of

atomistic calculations 4 to explain the bubble formation and the involved, self-trapping mechanism of

He in metals. We have revealed certain technically feasible aspects as well as raised some pertinent

issues relating to characterizing the role of a reactive species being present within bubbles.
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Table4a: MC Results of He*(2 3S) in He (1IS) bath at 300K

'n-mer' Structure

V r/Cm3 Mo1-1  (P)/GPa (U) /kJ mol-1  (r_H~,a <n

17.95 0.29 0.36 2.29 5.6

13.17 0.55 -2.0 2.29 5.9

0.57 0.85 -- 0

9.02 1.4 -0.9 2.32 6.3

1.5 2.2 -- 0

4.76 10.1 10.4 2.24 6.1

10.3 11.9 2.14 3.6

4.35 13.8 14.2 2.27 6.1

13.9 15.6 4.2

(a) First and second row values for each volume correspond to a-and c-states of He-He*

interaction.
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Heatbath Models for Helium Bubble States

1. Introduction

Production of 4He, the identification of (metastable) excited states of 4 He atoms, and

exploration of associated problems in fusion reactors1 have all been active areas of experimental

study for some time. On the theoretical front, in the use of ab initio, lattice dynamical, and

statistical mechanical approaches, helium has long attracted many researchers because it constitutes

a fundamental system that is challenging for technique developments involving quantum effects in
various contexts. 2

The indications, obtained in recent high-pressure experiments 3 using the diamond-anvil-

cell technique, of a possible new solid phase around 300 K along the melting curve, have resulted

in extensive theoretical research 4 effort on solid He. This is largely because of the availability of a

reasonably accurate pair potential2c and the recent advances in the computer simulation techniques

for studying phase transitions 5 and estimating free-energies. 6 There have also been a few studies

in the fluid phase, 7 dealing with the thermodynamic properties and equilibrium structure.

Our goal is to theoretically treat the dynamics of electronically excited species and the

condensed phase influence on such species. We have chosen 4 He for the benchmark studies

necessary for computational method developments. In the present work, we performed classical

Monte Carlo (MC) and classical molecular dynamics (MD) (where appropriate) simulations on

liquid He as well as solution systems consisting of one excited He*( 3S) atom situated in bulk

liquid He environment. Our work is focused on state points near 300 K in the high pressure (GPa)

regime. We have not addressed the quantum translational aspect and the three-body force-effects

on the structure and dynamics of liquid He, although they deserve a special and large effort in

order to accurately quantify such effects. Although these effects are at the outset expected to be

important for He, it is anticipated from the existing investigations on He8 that quantum effects have

only a minor role to play at high densities (high-pressure 10-20 GPa). Our work here is based on

classical simulations using the recently developed Aziz potential.2c

We now turn to the question of the degree of suitability of the Aziz effective pair potential

for realistic simulations of 4He and effects of three-body forces. Although the Aziz pair potential

has been widely used in the recent high density studies on 4 He which are referred to above, there

remain only two recorded deficiencies9 of the model: it is (1) too repulsive for distances less than

1.8 A and (2) fails to explain the thermodynamic stability of the bcc phase around 300 K. The

former weakness of the model will matter only at very high densities (pressures above 60 GPa).

The latter may well be due to the neglect of three-body forces. It has in fact been recently shown 10

that self-consistent phonon and MC calculations, involving Aziz's pair potential with three-body
interactions, produce results in excellent agreement with the experimental equation of state at high
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pressures. 11 It should however be noted that such refinements are only necessary for resolving the

stability of equally competing solid phases such as fcc and hcp and perhaps for detailed description

of dynamical properties.

The present simulations of liquid solvation structure can yield the associated heat-bath

modelling MTGLE parameters for realistic quenching studies (e.g., in He-He* matrix studies).

This involves certain approximate statistical mechanical relations between structural properties and

the frequency moments of the GLE heatbath spectral density. Such prescriptions for determination

of parameters for stochastic dynamical treatments are delineated in a series of papers by Adelman

and coworkers, 12 in particular, within the partial clamping formalism developed for solvated

polyatomic entities. A dynamical simulation of solvation is essential for the exact characterization

of the dynamics of a heatbath since the real time-dependent friction kernels are dynamical

quantities. In this report, following Adelman and coworkers, we examine the validity of a

gaussian model for the time dependent solvent friction, and having obtained some MD-based

information for the degree of validity of the gaussian model for the solvent, we apply the gaussian

model to the MC-based structural (radial distribution functions) data from a solution of He* in He

(reported earlier). 13  This kind of approach is necessary especially because heatbath

parameterization via MD simulations is difficult for the solution problem due to the possibility of a

reaction between He* and the solvent He. From our present calculations, we obtain evidence for a

decrease in pressure sensitivity upon electronic excitation in the high pressure He-matrix, for a

modelled excited He* state (specifically, we employed the c-state for He-He* interaction)

compared to ground state He (leading to the Aziz potential of He-He interaction).

Subsection 2 describes the adopted interaction potential models and simulation details along

with a brief description of how the MTGLE parameters have been estimated in the present work.

Subsection 3 contains the main results and discussion.

2. Methodology

A. Potential Models and Simulations

We employed the recently developed multiparameter Aziz model 2c of effective pair

interactions in condensed phase Helium in our studies of the structure and dynamics of liquid He.

This effective pairwise-additive potential has recently been employed in a variety of condensed

phase simulation studies,4 as discussed in the introduction. It not only reproduces adequately a

sizable number of experimental data but also we find that it accounts particularly well for the

equation of state1 I appropriate to our present moderately high pressure studies. The functional

form of the model used can be written as
-6b-  -8 -107

p(r)6 10 - R+ f(R)]
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where R = r/rm, rm = 2.9673A, b = 544850.4, t= 13.353384, C6 = 1.3732412,

C 8 = 0.4253785, C10 = 0.1781, d = 1.241314, e/kB = 10.8K, and kB is the Boltzmann

constant. The corresponding potential parameters were determined2c by fitting to the differential

cross-section measurements, second-virial coefficients of the gaseous He, thermal-conductivity,
high-temperature viscosity, and He2 dimer electronic and vibrational energy levels.

The solution simulations involve a system consisting of one excited He* atom situated in

bulk liquid He environment, the atoms of the latter interacting with each other via the effective Aziz
potential, whereas, for the He*-He interactions, we adopted the recently developed He2 *(a 3 yu+

and c 3 Xg+) potentials of Jordan, Siddiqui and Siska.14 They employed generalized Morse-

Hulburt-Hirschfelder functions to describe both the well regions (Region A) and barriers (Region

B) and Tang-Toennies form for the long-range van der Waals interaction (Region C). We refer the

reader to their papers for the detailed functional forms in each region. The 17-parameter 15 models
have been obtained by using the data from crossed beam scattering experiments, ab initio results

and low-temperature exchange rates.

B. MTGLE Parameters

The MTGLE parameters needed for the stochastic dynamical modelling in liquid state
include the characteristic Einstein frequency, denoted Coe0, the coupling constant, denoted mcl,

and the friction kernal, denoted P(t). oe0 enters the stochastic equations of motion and governs the

initial energy transfer between the solute species and (approximately) the first solvation shell
species of the solvent degrees of freedom. we0 determines the encounter frequency for solute-

solvent collisions that are responsible for maintaining or quenching the metastable species trapped
in bulk. wc l controls the overall efficiency of energy transfer from the reagents to the heatbath.

The detailed theory of MTGLE and expressions for the basic MTGLE parameters, oe0 and

c 1'in various regimes (exact as well as for both isolated and interacting solute atoms) are

discussed at length by Adelman and coworkers. 12 For completeness, here we give the appropriate
(isotropic liquid satisfying virial theorem) formulae used:

02 =_ 1 (207)
3m Ur /
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2 4
For pairwise-additive potentials between the atom-solvent species, e and (0 , in the

linear response approximation, can be expressed 12 in terms of the corresponding radial distribution

function (RDF), g(r):

0 4 7tPTr2g(r)[(p,(r)+2(p'(r)/r]dr
e 0 3m 0 (209)

4 ___ 0 2 2 2
CO 1 m r g(r)[{"(r)} +{2p'(r)/r} ]dr (210)

where m and M are the masses of the solute and solvent species, p is the solvent number density,

g(r) is the solute-solvent radial distribution function, (p(r) is the interaction potential between the

solute and solvent species.
The time-dependent friction, P(t), determines the frictional drag on the various different

frequencies participating in the dynamics. If one examines the frequency dependent function 3(0o),

obtained by fourier transforming 3(t), the values of 3(w) at the frequencies corresponding to

critical dynamical regions on the potentials play a key role in describing important solvent effects.
It is possible to compute 3(t) from the present MD runs by employing the Volterra integral

equation 16 relating various time correlation functions obtainable from the MD simulation

trajectories. In addition to the VACF, these correlation functions include position autocorrelation

as well as position-velocity cross-correlation functions. 17

3. Results and Discussion

Certain features of condensed phase Helium are unique and noteworthy in the simulation
results. First of all, the classical MC/MD simulation procedures yield reasonably converged results

for the liquid state condensed Helium only when the number of particles in the system is near 256
for lower pressures, and 500 for the higher pressures (>10 GPa). This is because there are three
significant peaks in the radial distribution function (see below) and that means two solvation shells

around each He atom, which requires the larger number of atoms than the 108 particles usually

employed for the Argon system. Further, the behavior of He in the condensed phase is quite

different from the case of Argon. The most striking aspect of this is the predominant role of
entropy effects in the liquid free energy of binding (this is reflected in the fact that the internal

energy of binding is an excess positive quantity as actually seen in the simulations as well as in the
configurational integral, which may be readily computed from the known radial distribution
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functions). In Table 5, we report the molar volumes at which simulations have been performed,

the configurational internal energies, observed pressures, and the factor PV/RT.
The computed trends in liquid structure, dynamics, and the MTGLE heatbath parameters

for pure liquid Helium as a function of pressure are presented in Figs. 19 through 21 respectively.

Liquid Helium may be treated classically in the examples shown, all of which correspond to a

temperature of around 300 K. As pressure is increased quantum effects become less, and may

possibly become relatively important for the present pressures of 0.3, 0.5 and 1.4 GPa. This may

be borne out from the factor PV/RT, reported in the last column of table 5. On the basis of an

oscillator model obeying the Gruneisen equation of state for the solid and using estimated

Gruneisen parameter and the Debye temperature at room temperature and high pressures, Levesque

et al,4a estimated APQV/ RT = L, where APQ is the leading quantum contribution to the

pressure. As our temperature and pressure range is analogous to their studies along the melting

curve, one may assume a value similar to theirs for the quantum contribution to the pressure. Such

a value for the quantum contribution to the pressure may be compared with the PV/RT values

reported in table 5.
Figure 19 displays the RDFs for six different pressures, three of which (0.3, 0.5 and 1.4

GPa) are close to the gaseous fluid and three (10.4, 12.7, and 14.4 GPa) are close to a liquid

under high pressure. The RDFs reflect the decreasing nearest neighbor distances with increasing

pressure and the more diffuse distributions of neighbors in the gaseous fluid phase. The 10GPa

and 14 GPa results were obtained from 500 particle simulations and are more accurate than the 256
particle 12.7 GPa result. The He atom's velocity autocorrelation functions (VACF) shown in Fig.

20 display a dramatic change in dynamical character as a function of pressure. In fact, the low

pressure VACFs indicate gas-like behavior with a long hydrodynamic positive tail whereas the

high pressure ones show the oscillatory str,. ture characterizing a liquid-like condensed phase

correlation. 18

Although the quantum effects are expected to contribute to the structure and dynamics of

liquid 4 He at 0.3, 0.5 and 1.4 GPa on the basis of the discussions above, recent semiclassical and

path-integral simulation studies 19 on modelled rare gas atoms indicate that the effect of

semiclassical/quantum corrections to the RDF is not significant. The first peak of RDF gets

slightly broadened resulting in reduction of the peak height and closer contact radius value. Such a

detailed comparison for the VACFs from classical vs semiclassical/quantum simulations has not

been made to our knowledge. The self diffusion constants obtained from the area of the VACFs

given by semiclassical (Gaussian wave packet simulations)lsa calculations are lower than are

obtained by classical MD simulations. Thus further work is needed to establish the quantum

effects on the initial decay and the behavior of VACF at intermediate times. We can then assess the
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corresponding effects on MTGLE parameters. As the quantum contributions have modest
influence on the RDF as discussed above, we may expect that the quantum effects on oeowould be

less severe than on cocl(see below) and higher moments.

The MTGLE parameters have been obtained for the tagged solute He in liquid He both by

direct ensemble average during the simulation run itself using Eqs. (206) and (207) (at the expense
of more CPU time for the additional computation in the forces loop) and from the p(r) and g(r) in
Eqs. 3 and 4. For a pressure of 0.3 GPa, the coe0 and ocIvalues are 18 and 28 THz from

ensemble averages compared to 16 and 33 THz estimated from Eqs. (208) and (209). Similar
comparison can be seen from the results in table 6. Figure 21 shows values for the moments20 of
the spectral density, c(eo and o'cl, as a function of pressure obtained as ensemble averages. It is

seen that these bulk liquid values are quite sensitive to (and exponentially dependent on) the
pressure. The sensitivity of the dynamics shown by the velocity autocorrelation functions in Fig.

20 ieflect the basis for the MTGLE parameter variatior- - elf.
Table 6 gives the values of the MTGLE parameters 0 e0 and C.0Cl to be used if the He* atom

is treated as if it were a diffusing particle in the liquid state with a- and c- state solute-solvent

interactions assumed. The table also contai i. for comparison the corresponding parameters for the

ground level He atoms (with X-state interaction) in liquid Helium. The solution values were all

obtained from RDFs from MC whereas the X-state parameters have been verified via direct
computation of moments in molecular dynamics (Eqs. 207-208) as well as using RDFs (Eqs. 209-

210) as discussed above. Since dynamical simulations for the He* in He solution are difficult due

to a possible reaction between He* and He, such a comparison (via Eqs. 207-208) is not available

for the solution at the present time. However, the pure liquid results based on RDFs give credence

to the solution results at the respective pressures. It is seen that the parameters are very sensitive to

the electronic states, which simply reveals that the primary zone must ideally include more than the

He* atom. The table also contains high frequency parameters for RDFs from each given electronic

state being combined with potentials for different electronic states. This sort of comparison reveals

the change in the condensed phase dynamics occurring as a result of a sudden electronic transition
to which the solvation structure has not adjusted.

Figure 22 displays a comparison of pressure dependent VACFs obtained from a gaussian

3(t) model with MD-based VACF results for the pure liquid helium. The gaussian model is based

on the high frequency parameters of Table 5 and, for a liquid ( 0) c
has zero adiabatic frequency for a tagged particle), is given by,
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Figure 19. Variation of fluid structure of model helium with pressure.
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Figure 20. Fluid dynamics.(VACF) of model helium as a function of pressure:
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Figure 21. Variation of He(lS) heatbath modeling (MTfGLE) parameters with pressure.
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Figure 22. Comparison of pressure-dependent He( 1 S) VACF obtained from MD trajectories

(continuous line) and from the RDF-based gaussian friction model (dashed line).
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Figure 23. Effect ofpressure on He(3S) VACF from RDF-based gaussian friction model.
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Inset shows results for the RDF-based gaussian friction model of He(IS) for
comparison.
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Table5a: Some Thermodynamic Properties of liquid 4He at 300K

(U)U/kJmol "1  (P) GPa
Pv

Vm / Cm3 nool -1 _____________ RT
Bulk Solution Bulk Solution

17.95 0.36 0.36 0.29 0.29 2.2

13.17 0.74 -2.0 0.55 0.55 2.9
0.85 0.57

9.02 1.9 -0.9 1.4 1.4 5.1
-2.2 1.5

4.76 11.7 10.4 10.1 10.1 19.5
11.9 10.3

4.35 16.1 14.2 14.3 13.8 25.3
15.6 13.9

(a) In the case of solution studies, first and second row values for each volume correspond to a-
and c-states of He.
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Table 6 a: GLE parameters for He and He* solutes in liquid He

0o) (THz) c% (THz).
P (GPa)

X-state a-state c-state X-state a-state c-state

0.55 23, (21) 13 23 32, (39) 40 27
22 15 39 19

1.4 32, (30) 15 32 41, (48) 35 35
32 15 38 25

10.1 68, (65) --- 48 74, (84) 58 53
47 --- 53 54

14.3 77, (68) --- 49 83, (86) 62 56
48 --- 55 62

(a) The MTGLE parameter values for He are given as direct ensemble averages [see Eqs. (207),
(208) of text] with the values in parenthesis being from the corresponding (p(r) and g(r) [see Eqs.
(209), (210) of text]. For a- and c-states'of He, the parameters are obtained by using the
corresponding q(r) and g(r) data and are reported in the first row. The second row values for a
and c states correspond to mixing the (p(r) and g(r) functions in Eqs. (209)-(210), with the g(r)

data for the state in column (a and c) and (p(r) for the other state (c and a, respectively) to which the
electronic interaction is assumed to be switched.
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The normalized VACF, denoted i(t), is obtained from D3(t) by solving the following MTGLE

response function equation:

(t) 2 t) - (t- t)X(,r)dt (212)0

where dots denote time derivatives. The results shown in Fig. 22 are based on the Table 5

parameters obtained via the RDF route (Eqs. 209-210). It is seen from Fig. 22 that the gaussian

model improves (by agreeing for longer times within the short-time region) with pressure, though

it is not very good for the gaseous phase helium corresponding to 1.4GPa. It is worse at 0.5GPa

(not shown) and this is to be expected. Although the gaussian friction model based on the direct

moments (cf. Eqs. 207-208) of Table 5 led to overall better agreement with MD VACFs, but we do

not present them here. The gaussian model is a good short time model at the higher densities of the

liquid. Anyway, the RDF route at least allows us to obtain the VACFs for the solution of He* in

He from the RDF data for He* bubble reported earlier. 13 In Figure 23, we show the VACFs for

the solution, based on the gaussian model friction for c-state helium bubble (obtained using the

parameters of Table 5 and Eqs. 211-2.12). The key observations are:

(i) the excited state (c-bubble) VACFs qualitatively change with increasing pressure in a

way similar to the ground state VACFs (with lOGPa and 14GPa having essentially a

limiting (saturated effect) behavior);

(ii) the excited state VACFs decay on longer time scales than the ground state VACFs of

Fig.22 at the corresponding pressures; and

(iii) the pressure dependence of the excited state VACFs reflects a diminished excited state

pressure sensitivity compared to the ground state (see Fig. 23 and inset for comparison).

(i) is a natural consequence of increased density of the liquid leading to more damping,

whereas (ii) is related to the larger size of the excited state cage (the large bubble is formed due to

the excited electron's repulsion of solvent atoms). (iii) gives a significant insight into what

dynamical effects electronic excitation may lead to. (iii) is due to the farther lying atoms of the
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liquid playing a primary role in the solvation effects for the large excited state atom's (cage)

bubble. In this long-range region, RDFs are flat and less sensitive to the pressure, and hence so

are the moments entering the gaussian model. This trend shows that long-time properties such as

diffusion constants are probably more affected by pressure dependence of condensed phase

influence on excited states than the present short-time dynamical properties.

4. Conclusions

The present pressure dependent simulations provide many insights. The behavior of He in

the condensed phase is found quite different from the case of Argon. A predominant role is played

by entropy effects in the liquid free energy of binding (reflected in the the internal energy of

binding being an excess positive quantity). As pressure is increased, quantum effects become less

(eg. at 10-14GPa cases reported here), and possibly, they may become relatively important only

for the three lower pressures (0.3-1.4 GPa). The low pressure VACFs indicate gas-like behavior

with a long hydrodynamic positive tail whereas the high pressure ones show the oscillatory

structure characterizing a liquid-like condensed phase correlation. The RDFs lead to similar

conclusions.

It is seen that the MTGLE parameters are quite sensitive to (and exponentially dependent

on) the pressure. The gaussian friction model improves with pressure and provides VACFs for the

excited atom's bubble from structural input (RDFs) alone. The sensitivity of the dynamics shown

by the velocity autocorrelation functions, for He(3S) and He(IS) in comparison, reveals the change

in the condensed phase dynamics occurring as a result of a sudden electronic transition to which

the solvation structure has not adjusted. Electronic excitation leads to the sampling of lower

frequency components of the solvating medium and this is reflected in the slower decay of VACFs

upon electronic excitation. It is also found that an increase of pressure may introduce less

variations in the translational dynamics of the excited He( 3S) state than it does in the ground

He(QS) state. The present heatbath models are being employed in stochastic dynamics calculations

of electronically inelastic collision processes21 within the high pressure 4 He liquid.
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Condensed Phase Dynamics

Introduction

The condensed phase dynamical problems relevant to HEDM research involve considerable

richness in possible complexity; they can also involve quite a broad range of phenomena in terms

of the relevant physics and chemistry. Since the main goal of the three year program was to

develop new and required methodologies using helium metastables as prototypes, our specific

calculations have been determined by the relevant physics of this system. The real depth of the

benefits from the three year program becomes clear only by imagining the intrinsic generality of the

computer simulation techniques developed here and the fact that in coordination with the

simulations, we can also employ previously existing technology such as variational transition state

theory' to treat a wide variety of condensed phase reaction and aggregation phenomena that have

now become relevant to HEDM preparation and storage issues.

The helium metastable dynamics in a high pressure helium bath can be adequately described

by the SCEM+GLE technology which was developed by this effort into a tool for chemistry of

species embedded in the bulk. Previous to this program, the existing technology was mainly

developed for gas-surface collisions and assumed asymptotic noninteracting species undergoing a

collision and separating again. The present effort began by completing our work on a variable time

step integration of the stochastic equations of motion employed in the SCEM+GLE framework. 2

When a "collision" occurs within the bulk, the semiclassical equations do not lead to long

time asymptotic constant values of probabilities, since the heatbath is constantly interacting with the

primary "collision partners" and perturbing the primary zone states into making transitions. We
have adapted the SCEM+GLE methodology for liquid bulk by (1) implementing a thermal

sampling of initial conditions for the "collision" in the bulk solution and (2) developing new ways

to analyze the results of the semiclassical propagation to obtain observables. The second step

presently involves examining appropriate time correlation functions. In particular, probability

fluctuation autocorrelation functions yield information regarding lifetimes of given quantal states
from their decay time. Such an analysis is soundly based on the time correlation function

formalism of nonequilibrium statistical mechanics. 3

The next subsection describes our dynamical calculations using the SCEM+GLE

technology on the problem of metastable helium atoms trapped in condensed phase bubbles. It
then summarizes the overall implications of our results in terms of what happens to the stored

energy of helium metastable atoms in gas and liquid helium as a function of pressure. The

subsection also finally sketches how the simulation techniques co'dd be combined with other in-
house techniques at Chemical Dynamics to address related and quite different possible fates of

HEDM's in condensed phases; this type of framework is relevant to the problem of Li storage in
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hydrogen or other conventional fuels such as hydrazine which are being presently explored at the

astronautics laboratory (AFSC).

Dynamics of He*(3S) in Condensed Phase Bubbles

1. Solvated Dynamics

Since the metastable helium bubble, whose structure was discussed in the previous section,

is too large to explicitly include all the several dozen solvent He atoms of even the first solvation

shell, solvated dynamics was modelled by one solvent on either side of a collinear triatomic model,

schematically shown in Fig. 24, where the central atom is the atomic metastable, He*(3S). The

dynamics calculations in solution were based on employing a two state model including only a and

X states along with their spin-forbidden radiative coupling. These SCEM+GLE simulations were

done for different pressures (in the GPa range) and showed no significant radiative quenching on

time scales much longer than that found for reactive clustering. The latter timescale was estimated

from limited MD simulations of the solution system whose MC study is reported in a previous

section (see p. 94). The -former was manifested by a nondecaying probability fluctuation

autocorrelation function for very long times. The net conclusion is that the reactive (clustering)

channel is more likely than radiative quenching in the bulk and hence the primary loss mechanism

for the excited atoms. The pressure dependence of this reactive clustering channel was revealed

and investigated at length in our MC simulations.

STOCHASTIC TREATMENT
OF

HELIUM BUBBLE

He He* He

sO (a7,
- - -' - -- - -- - - -a - -a

(:9

SN-I BATH

Figure 24. Schematic diagram of stochastic model with an elementary primary zone made of
helium metastable atom and (effective) "ghost" atoms that represent the liquid
helium heatbath.
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The collinear model system was explored numerically at this stage to illustrate the basic feasibility

of employing the present methodology and to display the appropriate time correlation function
behavior expected in different systems with different condensed phase HEDM lifetimes. The

collinear triatomic system modelling the He* bubble in a high pressure He liquid matrix was
studied using the semiclassical eikonal method for the primary zone and the generalized Langevin

equation (GLE) to simulate heatbath effects. Probability fluctuation auto correlation functions

(ACFs) for 3S state of He* are shown in Figs. 25 and 26 for 0.5Gpa and 1.4Gpa a-bubble which
compare well to the displacement autocorrelation functions. The comparison of a variety of mode

ACFs can yield information about the roles of various condensed phase modes of quenching in

destabilizing the HEDM. The generalized Langevin approach correctly incorporates the local and

macroscopic mode participations in primary quenching dynamics.

The dynamics shown is for radiative quenching of He*( 3 S) but we have employed

arbitrarily increased electronic dipole couplings so as to obtain numerically facile rapid quenching

behavior. As mentioned above, no radiative quenching is observed in such calculations when the

actual dipole coupling strength of Chabolowski et. al.4 is employed since reaction occurs before
quenching. Special dynamical methods are being developed for treating quenching in very long-

lived HEDM species (cf. persisting ACFs), otherwise requiring long trajectories. The technology

employed in this simple model may also be applied to the dynamics of vibrational relaxation in

matrices; such a semiclassical, rather than classical, description is especially appropriate if V --+ V

transfer is an important relaxation route. The adaptation of the SCEM scheme can be accomplished

by expanding in a suitable joint matrix-host basis set.

2. Summary of Results on Helium Metastables

In conclusion, we summarize the overall picture already obtained from the above illustrative

studies of the helium metastable quenching pathways in gas and condensed phases.

Radiative versus Nonradiative Quenching in the Gas Phase

Quenching via radiative decay in vacuum of a isolated helium atom in 23S state is controlled

by the relativistically induced magnetic multipole couplings within the atom. Gas phase quenching

at higher pressures comes from He-He* collisions. Although the system can in principle quench

nonradiatively, it was found that the related probabilities are very low, -10 -16, compared to -10-8

for the radiative routes. The direct radiative route from a to X state made possible by spin-

forbidden radiative coupling seems to be the dominant quenching mechanism in all our studies so

far. This was also assumed for the present analysis of the condensed phase problem.
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Figure 25. Results from the stochastic dynamics at 0.5 GPa showing the fluctuation
autocorrelation function (of excited He*); this function will display decay of
excitation due to electronically inelastic collisions within the liquid bulk. (b) the
displacement autocorrelation function of the metastable He* atom in liquid.
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Figure 26. Same as Fig. 25 for a pressure of 1.4 GPa.

Radiative Quenching versus Reaction in Solution

The behavior of an excited atomic helium species in condensed phase involves

electronically nonadiabatic solute/solvent interactions. If these are taken to be reasonably described
by the gas-phase two-body potentials, estimates of condensed phase behavior may be obtained
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from the computer simulations described in the previous subsections. The extremely small

nonradiative and many-state collisional quenching pathways of Fig. 4 are assumed to be ignorable

upon transfering to condensed phase in our present analysis. This means two-state models, such

as the a and X combination used in Fig. 5, are adequate in the condensed phase and hence the a

and c states are the only key potentials. Interactions of a He*(2 3S) in a high pressure helium liquid'

lead to quantitatively different stabilities for the metastable atomic species depending on the a-state

and c-state characters of solute-solvent potentials. The c-state bubble protects the atomic species

up to very high pressures whereas the a-state more easily allows reaction with a solvent He atom

leading to a pronounced degree of cluster formation that varies with pressure.

One remarkable feature (seen in the Monte Carlo simulation of helium bubble states) is the

maintenance of a bubble structure despite the cluster formation (at least when the simulation

employs reasonable pairwise additive interactions). The c- and a-states are radiativejy coupled in

reality and both states can play a role in determining the metastable atom's equilibrium bubble

shape. The cluster formation observed here is a neutral excitation trapping process in liquid that is

analogous to the charged exciton trapping phenomenon observed5 in rare gas halide crystals. These

results indicate that stabilization of a metastable by forming clusters of it with a suitable co-species

may still result in trapping into bubbles in the condensed phase. Since such bubbles can protect the

species' energy from dissipation to bulk, it is useful to identify conditions for their formation in

different matrices for different species.
It is verified that reaction is the dominant loss mechanism in condensed phases when

compared to collision-induced radiative decay. It was found that the reaction can go on to result in

formation of higher clusters, but sensitively depending on pressure and electronic state of

interactions. The solution structure has been examined via computer simulations. The

parameterization for a GLE heatbath description obtained that were then used in exploratory

condensed phase dynamics of the HEDM. It has been found that there is no radiative quenching on

the time scales within which significant reaction occurs.

Cluster Stability and Concentration Effects in Solution
Clearly, the above results show that the average degree of aggregation achieved by the

clustering events depends on the thermodynamic state. Another factor in controlling their stability

is the concentration of such clusters each of which could potentially release the stored energy in

collisions. These studies require many-body potentials and we do not have any information

pertaining to these yet. But it is believed from concentration dependence studies that dimer-dimer

collisions in liquid reduce dimer lifetimes to as small as 30ms6 at a density of 1012cm -3.
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Extended Studies

Solvent Shift of 23 S->2 3 P Absorption Line
Another key application of the present technology is to obtain spectral absorption and

emission profiles for HEDM's in the condensed phase that include detailed solvent static and

dynamical shifts and any shape changes. Such calculations can be valuable for interpreting the

mechanisms controlling/modifying condensed phase experimental spectral data and in comparing to

gas phase spectra. We have performed illustrative calculations using the recent helium potentials of

Yarkony to reveal this capability.

One of the early key experimental observations on helium bubbles was the blue shifted

nature of the above absorption line in contrast to a red shifted nature of the corresponding emission

line. This was fruitfully studied in a phenomenological bubble model 7 using adiabatic line shape

theory in the static limit. Solvent static and dynamical effects can both in general play a role in

shifting spectra. Although we have characterized the high pressure helium bath and deduced

parameters for stochastic dynamics simulations of metastable species trapped in it, in the case of

the present atomic transition, solvent dynamics can be shown to be less crucial in determining the
absorption line at high pressures (a typical bath atom moves only -0.2a 0 within a transition dipole

relaxation time compared to -1.5a 0 for the low pressure cryogenic regime where previous

experiments were). We have verified from our studies the previous experimental absorption line

blue shifts employing the quantal radial distribution function from Hansen and Pollock 8 and

Yarkony's1 transition dipole function. We have also performed a similar calculation employing

our radial distribution function for the a-bubble and the a<->b transition dipole function tofind a

large red shift for the high pressure line position by -. 29eV. This value should be modified by

considering contributions due to transitions dictated by the (presently unknown radiative) coupling

of the c-state to the u-manifold (outside the primary space employed by Yarkony) of the 23p

asymptote. We have found that the large red shift is predicted even when the contribution from the

clustering region of a-bubble is subtracted. At slightly lower pressures, the complication of
reaction may be avoided and the degree of a,c mixing characterized via spectrosopic studies.

Studies on the H2 matrix
We have conducted preliminary studies on condensed phase liquid hydrogen (high

pressure, in the Gpa range, and hence classically described) with a two center Lennard-Jones

(2LJC) anisotropic effective pair potential. The goal of using an anisotropic potential even though

liquid hydrogen is known to be quite isotropic in behavior was to develop the codes and analysis

tools for such a general diatomic condensed phase matrix.

141



The first step is to devise an effective anisotropic pair potential for condensed phase
simulations of molecular hydrogen. MD calculations have been carried out for liquid H2 system of

108 molecules interacting through two Lennard-Jones centers (2LJC) coincident with the positions

of the atomic masses. Figures 27-29 display the center of mass (c.m.) pair correlation functions

(PCFs) for special configurations and the time correlation functions (TCFs) for 2LJC-model H2 at

265K and 4 GPa.

Liquid Hydrogen (2LJC) Liquid Hydrogen (2LJC)

5 5
- T-Dimer

4 4 .-- X-Dimer

LI3 -- P-Dimer - 3
-- L-Dimer

6 9 12 6 9 12

R (bohrs) R (bohrs)

Figure 27. Simulation results for radial Figure 28. Simulation results for radial
distribution function of parallel (P) distribution function of T-
and L-shaped hydrogen dimers and X- shaped hydrogen dimers
in liquid, in liquid.

Figures 27-28 display c.m. PCFs for configurations which lie within ± 100 of specific relative

orientations: 'X'='crossed', 'P'='parallel adjacent', T='T-geometry', and 'L="linear, or parallel

end to end'. The position of the maxima of these PCFs compare well with the position of the

potential energy minima for two isolated molecules in the corresponding configuration. This

indicates that the presence of other molecules in the dense liquid have little effect on the minimum

of the potential field which acts on adjacent molecules. By contrast, for the models of other related

linear molecules, (K. Singer, A. Taylor, and J. V. L. Singer Mol. Phys. 33, 1757 (1977)) the

same arrangements have been found to be almost equally stable. Figure 29 displays the c.m. and
angular velocity auto-correlation functions of the 2LJC-model H2 . In the liquid state, the VACF

exhibits a negative minimum, which is interpreted as caused by bac'.-scattering by nearest-

neighbors, and a long negative tail, ascribed to a cooperative motion of the surrounding particles.
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The double minimum in the c.m. VACF can be interpreted (J. Barojas, D. Levesque, and B.

Quentrec Phys. Rev. A2, 1092 (1973)) as arising from the different mobility of a linear molecule

parallel and at right angles to its axis. This is clear from the c.m. VACFs of velocity components
parallel and perpendicular to the molecular axis. The minimum of VACF 1. is deeper and occurs at

earlier times than that of VACF i. The presence of double minimum in VACF _ was interpreted to

be the result of successive negative impulses transmitted to the c.m. first by one and then by the

other end of the molecule, as it encounters obstacles. The angular VACF would also exhibit

negative minimum for more anisotropic systems.9

Liquid Hydrogen (2LJC)

0.8
-- V of COM

0.6 -- V parallel

. - V perpendicular
W- 0.4 Angular Velocity

0.2

-0.2

0.05 0.10 0.15
Time (pS)

Figure 29. Simulation results for autocorrelation functions of various components of
the molecular velocity in liquid hydrogen; correlation functions of center of
mass, parallel, perpendicular and angular velocities are shown.

Detailed Studies of Molecular Structure:

The pair correlation function (pcf) for linear molecules is generally defined as

g(R, 0 1 0 2' 12), where R = IR 121' R 12 being the vector joining the two centers of mass;

A A A A
cos0 1 =1 1  R 12 , cos0 2=12 R 12 , and cosq 12 =(IlxR 12 ) . (1 2 xR 12 ); ! rY 2 are

the bond vectors of molecules 1 and 2, and A denotes unit vector. It is difficult to study the

properties of such a 4-dimensional correlation function. The expansion in terms of spherical
harmonics can be used to analyze the pcf of linear moleculeslO:
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g(R, I2' f2 ) =1 4n gl (R) YI m e ' ¢1 )YI ' - m(0 2' 21)02IP1 1 fM ,m1 m 2!9 (213)

where Y I'm' Y ',- m are normalized associated Legendre functions. Although not directly

measurable until very recently, 1I the coefficients g 1, 1'm can be obtained from the translational

and rotational trajectories of the molecules in the computer "experiment".

The site (atom)-site pcf g s(r) defined by

Ngs(r)= lim I X Xly n(r <r. . < r + Ar) /4nr 2 Ar
2V Ar --- 0 2 s s' (214)

where N is the number of molecules, V is the volume, s and s' correspond to the nonbonding sites

of the pair of molecules i and j, and n(r) is the histogram count. g s(r) is related by Fourier

inversion to the static structure factor which can be determined by X-ray or neutron diffraction.

Useful information has also been obtained from the incidence of certain special configurations as

functions of molecular separation.
The site-site pcf, the first six coefficients in the above expansion and the four special

configurations have been calculated for molecular H2 at 270K (-4 GPa). The principal

characteristics of these structural features are reported in Table 7.

Curves for the first six radial distributions which arise as non-vanishing coefficients in the

expansion (1) are shown in Figs. 30 and 31. The general appearance of the g 1, l mis surprisingly

similar to the long (more anisotropic) linear molecules. 12.

g 000(R) is the c.m. pcf. The main peak occurs at 5.83 bohr which coincides with the

peak of the corresponding T pcf. The second peak is at somewhat less than twice the distance of
the first peak, Rmax. It could obviously arise from two vectors of length Rmax making a small

angle with each other. There is no bulge on the left-hand side of the first peak. This is mostly the
case with less anisotropic molecules such as N2, F2. Generally its range of correlation has been

found to be greater than that of g s(r). As we employed 108-molecules in our preliminary

simulation studies, the correlation length is restricted and does not extend beyond the second

maximum. The necessity to carry out large system is thus apparent.
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Table 7: Characteristics of pair correlation functions

Positions (bohrs) of maxima of pcf s for special configurations

X P T L
5.29 5.41 5.83 6.43

Maxima at Minima at
(bohr) (bohr)

g s(r) 5.69, 10.57 8.09

g000 5.83, 10.6 8.05

9200 6.28 5.41

9220 5.23, 6.67 5.71

9221 6.19 5.29

g 200 f(R)(3 cos 2 0 1 - 1) has no negative lobe at small R; this is because if the
R

centers of mass are close to one another the vector connecting them is likely to be approximately
normal to the axes of both molecules -as in the configurations X and P. The maxima of these

pcfs is in fact close to the minimum of g 200. The zeros of g 200 result from the cancellation of

positive and negative contributions to (3 cos 2  1 - ) arising from 0 1 > Cos- l(v' /3);
R

they occur at separations which are close to the main peaks of g0 0 . For the T configuration

(3 cos 2 01 - 1) equals either 2 or -1, and a small mean value of the angular factor for

arrangements close to T is plausible. This is compatible with a large contribution of T

configurations to the main peak of g 000.
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Figure 30. Simulation results for gooyj, 9200J, and 9220 coefficients of Eq. (213).
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Figure 31. Simulation results for g221, g222, and g400 coefficients of Eq. (213).
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For g 2 2 0 -f)(3cos2 1)(3cos2e 2 1) , the initial positive lobe with a

maximum at 5.23 bohr indicates 0 1 0 2 - ir / 2, i.e. + and II like configurations. The lowest

possible value of the angular factor occurs at 0 1 = ic / 2, 0 2 = 0 or vice versa, i.e. for T

configuration. Table 7 shows that the minima of g 2 2 0 almost coincides with the maxima of

g 000. This again points to a significant incidence of T configurations at the main peak of g 000.
The subsequent positive lobe is probably due to L-like configurations.

The geometrical interpretation of the higher expansion coefficients becomes rapidly more
complicated. The theoretical significance of the expansion lies in its possible use in perturbation
expansion for anisotropic potentials.
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CONCLUSIONS AND RECOMMENDATIONS

From our gas phase method development efforts, based on the semiclassical computational

approach (within the eikonal approximation) we conclude that the approach is useful for

applications to collisional problems that are difficult to treat quantum mechanically due to the large
number of nuclear rovibrational states (coupled channels). The present semiclassical methodology

reveals much formal flexibility, and techniques are now available for applying it to different levels

of treatment of both classical and quantum dynamics of polyatomic systems. For each application,

the principles validated by our research should be carefully exploited in choosing a computational

strategy; the strategy should depend on the nature of the potential energy surface on which the

collision dynamics evolves, the accuracy of the available potentials and couplings and the accuracy
with which state-to-state results are needed. Validation studies described in this report are not

exhaustive, but do illustrate of the potential of the methods. New directions for novel and efficient

semiclassical computations have been formally developed by employing semiclassical
wavefunctions for multidimensional electronically inelastic problems, although the validations of

this new approach (studies of O+HF and Na+H2 collisions) have been done only for

multidimensional single potential surface problems. A "primitive" version of the theory (not using

semiclassical wavefunctions) was employed for most of this research, since the formal

improvements were discovered towards the end of the research. The primitive method has been

illustrated using the (many-surface) electronically inelastic problem of metastable helium collisions

in both gas and condensed phases.

The effort on condensed phase modelling, and simulations on helium metastable structure

and dynamics in liquids illustrate( the power of the computational approach by revealing

microscopic aspects of the phenomenon of bubble formation around an electronically excited atom

in a liquid. The sensitivity of the simulation method to the potential surfaces for different electronic

states shows that semiquantitative levels of treatment are possible. Even using approximate
potential energy surfaces, such calculations can be used to reveal mechanistic details that are not

easily accessed in experiments, and assist in the interpretation of condensed phase chemistry

experiments. Our experience in building a stochastic model for the simple helium system can lead
the way for treating other inert gas hosts; however, heavier inert gas systems do exhibit different

phenomena and require more complex potential surface information. Systems such as the hydrogen

matrix, also recently studied by us, can display more complex behavior that may be difficult to

obtain accurate potential energy information on; this can happen if the excited state chemistry

involves many hydrogen molecule neighbors, and atom transfer. The key requirement for
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dynamical studies is potential energy surface information, and systems for which this is available

are amenable to theoretical studies.

The ground state dynamics of different species in the hydrogen matrix -can be treated by

combining the present methods with more standard methods such as variational transition state

theory. Besides computing rates for elementary chemical processes and lifetimes of species, the

technology developed here is also useful for obtaining theoretical line shapes for solid matrices, a

quantity directly probed in experiments.
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